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Abstract

Our aim is to prove Kontsevich's formula for rational plane curves,
which states that the number Nd of rational plane curves of degree d
passing 3d − 1 �xed general points in the complex projective plane
satis�es the following recurrence relationship.

Nd +
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−1

)
· d2

ANdA ·NdB · dAdB

=
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−2

)
· dANdA · dBNdB · dAdB

When accompanied with the base case N1 = 1, the formula enables
the computation of all numbers Nd.

The proof uses the �ne moduli space of stable n-pointed rational
curves and the coarse moduli space of Kontsevich stable n-pointed
maps, which are used to parametrise the rational plane curves that
feature in the formula. We introduce the concepts of moduli spaces,
of stable curves and of stable maps in our exposition, and sketch the
construction of the �ne moduli space. We also de�ne Weil divisors, and
use them to analyse the boundaries of the moduli spaces, which is an
important part of the proof. We largely follow the exposition of our
main reference, Kock and Vainsencher's book `Kontsevich's Formula
for Rational Plane Curves' [4]. Our conclusion explains how the proof
we provide is somewhat typical of modern enumerative geometry.
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Prerequisites

This dissertation has been written for the reader who has been introduced
to some elementary algebraic geometry, and uses notions such as quasi-
projective varieties and function �elds. We do not assume knowledge of
schemes or divisors, unlike other texts on this subject. In relation to the
undergraduate degree at Oxford University, the C3.4 Algebraic Geometry
course covers the required material.
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1 Introduction

One of the core properties of the complex projective plane P2 is that through
every pair of distinct points there is a unique line. A similar statement holds
for conics in P2: through every set of �ve distinct general points, there passes
a unique conic. The conics may be parametrised by their coe�cients [a] ∈ P5,

a1x
2 + a2y

2 + a3z
2 + a4yz + a5zx+ a6xy = 0, [x : y : z] ∈ P2

and this natural �ve-dimensional parametrisation suggests that the number
of points required to determine the conic is indeed �ve.

We want to ask how many rational degree-d curves pass an appropriate
number of points in the plane, and we will set this number to Nd. It turns out
that the correct number of (general) points we need to supply is 3d− 1, and
this corresponds to a (3d−1)-dimensional parametrisation of rational curves
using their coe�cients, as for conics above. The rational degree-1 curves are
simply the lines, and the rational degree-2 curves are the conics, so we have
just found that N1 = 1 and N2 = 1.

The focus of this dissertation is the following theorem due to Kontsevich
which gives a recursive formula which can be used to compute Nd for all d.

Theorem (Kontsevich, [4, Theorem 3.3.1]). Let Nd be the number of rational
curves of degree d passing through 3d−1 general points in the plane P2. Then
N1 = 1 and for all d,

Nd +
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−1

)
· d2

ANdA ·NdB · dAdB

=
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−2

)
· dANdA · dBNdB · dAdB

(1)

This formula yields

N2 = 1,

N3 = 12,

N4 = 620,

N5 = 87304,

N6 = 26312976,

. . .
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1.1 Parametrisations

A key property of an irreducible rational curve is that it can be parametrised
by the projective line P1. Instead of looking at the equation which de�nes
the curve, we will use Kontsevich's approach and look at the maps which
parametrise the curve.

We want our notion of the degree of a map to correspond to the degree
of the curve it parametrises. This means we have to introduce a slightly
di�erent de�nition of the degree of a map.

De�nition 1.1. [4, 2.1] The degree of the map µ : P1 → Pr is the product
d · e of the degree of the image curve d and the degree of the �eld extension
e corresponding to the map.

Example 1.2. Take the map µ1 : P1 → P2, [x : y] 7→ [x2 : xy : y2] with
image curve C1 = V(uw − v2) ⊂ P2 of degree d = 2. Then C1 − [1 :
0 : 0] is isomorphic to the open a�ne set A1 via [v2 : v : 1] ↔ v, hence
the function �eld is C(C1) ∼= C(v). The degree of the corresponding �eld
extension C(v) → C(x), v 7→ x is e = 1, and thus the degree of the map µ1

is 2 · 1 = 2.
Next, consider the map µ2 : P1 → P2, [x : y] 7→ [x2 : x2 : y2], which

has image curve C2 = V(u − v) ⊂ P2 of degree d = 1. Now, C2 − [1 : 1 :
0] ∼= A1, [u : u : 1] ↔ u, and C(C2) ∼= C(u). The �eld extension is now
C(u) → C(x), u 7→ x2 with degree e = 2. Therefore, the degree of µ2 is
1 · 2 = 2 also. In some sense, it is more natural to consider the image curve
as the double line V((u− v)2).

As suggested by Example 1.2, a degree-d map P1 → Pr is indeed de-
termined, up to constant factor, by r + 1 binary forms of degree d that
do not simultaneously vanish. This condition de�nes an open subset W ⊂
P(r+1)(d+1)−1, and those maps which are birational onto their image consti-
tute an open subset of W [4, Proposition 2.1.8]. We will see W later in
Section 3.4.

We want to identify the curves passing through �xed points P1, . . . Pn ∈
P2. To do this, we will study maps (µ : P1 → P2; p1, . . . , pn) with speci�ed
points pi ∈ P1 in the source space, and we will count the curves with µ(pi) =
Pi. Our �rst task is then to study collections of points in P1, and this is
the objective of Section 2. In Section 3, we will study the maps with the
accompanying points in the source space. Section 4 studies the structure
that will be fundamental to our proof in Section 5 of Kontsevich's formula.
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2 Stable Curves

Consider four ordered distinct points p1, . . . , p4 ∈ P1, pi = [xi : yi] on the
projective line. Recall that any ordered triple of distinct points in P1 is
linearly equivalent to the standard triple (0, 1,∞) where

0 = [0 : 1], 1 = [1 : 1],∞ = [1 : 0]

It follows that any (pi)
4
i=1 is equivalent to (0, 1,∞, λ) for a unique λ ∈ P1 −

{0, 1,∞}, where λ is the cross-ratio of the points, given by

λ = [(x2y3 − x3y2)(x4y1 − x1y4) : (x2y1 − x1y2)(x4y3 − x3y4)]

In the above way, ordered quadruples of distinct points in P1 are naturally
parametrised by their cross-ratio in P1−{0, 1,∞}, a quasi-projective variety.
At the moment, our parametrisation consists only of a bijection between
(equivalence classes of) ordered quadruples and P1 − {0, 1,∞}, but we want
to be able to use the structure of this parameter space.

2.1 Families of curves

The de�nitions and results in this section are taken from [4, Sections 0 and 1],
and the arguments are similar to those provided by Kock and Vainsencher.

De�nition 2.1. An n-pointed smooth rational curve

(C; p1, . . . , pn)

is a projective smooth rational curve C with n distinct points p1, . . . , pn ∈ C
called marks. An isomorphism between two n-pointed rational curves

φ : (C; p1, . . . , pn)
∼−→ (C ′; p′1, . . . , p

′
n)

is an isomorphism of curves φ : C
∼−→ C ′ such that φ(pi) = p′i for each i.

In order to �nd the geometric structure of the set of isomorphism classes
of n-pointed rational curves, we will need to start considering families of
curves as follows.

De�nition 2.2. A family of n-pointed smooth rational curves is a �at and
proper map π : X → B with n disjoint sections σi : B → X such that each
geometric �bre Xb = π−1(b) is a projective smooth rational curve.
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Proper and �at are technical conditions which ensure the family `behaves
well'. We shall not focus on these conditions, and they are included for
precision only. The word rational shall be implicit henceforth when discussing
curves. Either of the notational conventions X → B or X/B may be used
for a family. The sections σi and projection π will often be implicit, and the
same symbols may refer to the sections or projections of di�erent families.

Notice that for each b ∈ B, the �bre (Xb;σ1(b), . . . , σn(b)) is an n-pointed
smooth rational curve, where the sections σi identify the marks on these
curves.

De�nition 2.3. An isomorphism between two families π : X → B and
π′ : X′ → B over the same space B is an isomorphism of quasi-projective
varieties X→ X′ such that the following diagram commutes.

X X′

B B

π π′σ1,...,σn σ′1,...,σ
′
n

It is a fact that every smooth rational curve is isomorphic to P1. There-
fore, for n ≥ 3, each �bre is isomorphic to the n-pointed rational curve
(P1; 0, 1,∞, λ1, . . . , λn−3) for unique points λ1, . . . , λn−3 ∈ P1. Given any iso-
morphism from the �bre to P1 under which the marks are mapped to the
points p1, . . . , pn, and an isomorphism of P1 taking p1, p2, p3 to the standard
triple 0, 1,∞, the mark λi is the cross-ratio of p1, p2, p3, pi+3. The isomor-
phism is uniquely determined because the �rst three sections �x the iso-
morphism when they are set to 0, 1,∞. Although we have only shown the
existence of a bijection, these isomorphisms of �bres in fact yield an isomor-
phism of families

X B × P1

B B

πσ1,...,σn 0,1,∞,λ1,...,λn−3

Thus the family X → B is determined up to isomorphism by the maps
λ1, . . . , λn−3 : B → P1. This is the idea that motivates the de�nition of a
moduli space below. First, we need to de�ne a pull-back in the category of
families of n-pointed curves.

De�nition 2.4. The pull-back from a family π : X → B along a morphism
ψ : B′ → B is the unique family π′ : X′ → B′ such that π′ is the usual
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pull-back of

X

B′ B

π

ψ

and the sections σ′i : B′ → X′ are chosen so that the diagram

X′ X

B′ B

σ′1,...,σ
′
n σ1,...,σn

commutes. Explicitly, we have

X′ = {(b′, x) ∈ B′ × X | π(x) = ψ(b′)}
π′((b′, x)) = b′

σ′i(b
′) = (b′, σi(ψ(b′)))

De�nition 2.5. The universal family is the family U →M such that every
other family X → B is induced, up to isomorphism, via the pull-back con-
struction by a unique morphism B →M . It is de�ned up to isomorphism, as
with all universal property de�nitions. The spaceM is called the �ne moduli
space.

Moduli spaces are typically de�ned in a more category-theoretic way; see
[3, Section 2.1.3]. Our de�nition is tailored to our problem, and seeing how
this works will make this de�nition clearer.

Take any family X → B and let λ1, . . . , λn−3 : B → P1 be the sections
we found before. The universal family will capture the information in the
sections λ1, . . . , λn−3. Therefore, we set the �ne moduli space to be the
possible values of λ1, . . . , λn−3 as follows.

M = M0,n = (P1 − {0, 1,∞})n−3 − {diagonals} (2)

The diagonals are disallowed because the points must be distinct. Moreover
none of the points can be 0, 1,∞ since these are the values of the �rst three
sections.

Set U = U0,n = M0,n × P1. The universal family is U0,n → M0,n, with
sections given by

τ1(λ) = (λ, 0), τ3(λ) = (λ,∞)

τ2(λ) = (λ, 1), τi(λ) = (λ, λi−3)
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for λ = (λ1, . . . , λn−3) ∈M0,n. We can check that the family B × P1 → B is
the family induced by the pull-back along

b ∈ B 7→ (λ1(b), . . . , λn−3(b)) ∈M0,n

It is easy to see the uniqueness of this map, for no two �bres of our family
U0,n →M0,n are isomorphic, and hence the image of b ∈ B must be the point
of M0,n whose �bre in U0,n is isomorphic to the �bre of b.

Observe that for n = 4, we have M0,4 = P1 − {0, 1,∞} as suggested at
the start of the section.

We have therefore seen that

Theorem 2.6. [4, Proposition 1.1.2] For n ≥ 3, there is a �ne moduli space
M0,n for the problem of classifying n-pointed smooth rational curves up to
isomorphism.

2.2 Stable Curves

WhileM0,n is a smooth quasi-projective variety, we can extend our de�nition
of curve to get a �ne moduli space that is a projective variety. In our proof
of Kontsevich's formula, this `compacti�cation' of M0,n will be crucial. In
Section 4, we will see how the improved structure may be exploited. The
following de�nitions are taken from [4, Section 1.2]. Let n ≥ 3 throughout.

De�nition 2.7. A tree of projective lines is a connected curve such that

1. Each irreducible component is isomorphic to a projective line.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, meaning that if a node is removed, the
curve becomes disconnected.

An irreducible component of the curve is called a twig.

De�nition 2.8. A stable n-pointed curve (C; p1, . . . , pn) is a tree C of pro-
jective lines with n distinct smooth points pi ∈ C called marks, such that
every twig of C has at least three special points. A special point is either a
mark or a node.

De�nition 2.9. A family of stable n-pointed curves is a �at and proper map
π : X → B with n disjoint sections σi : B → X, such that every geometric
�bre Xb = π−1(b) is a stable n-pointed curve, whose marks are given by the
evaluation of the sections.
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Note that, since the marks are smooth points of the curves, the sections
are disjoint from the singular points (nodes) of the �bres. Naturally, an
isomorphism of stable curves is an isomorphism of curves which preserves
the marks.

Example 2.10. For n ≥ 3, any n-pointed smooth rational curve (P1; p1, . . . , pn)
is automatically a stable n-pointed curve.

Example 2.11. When discussing stable n-pointed curves, we will use di-
agrams like those in Figure 1. Here, each line segment corresponds to an
isomorphic copy of P1, and the dots indicate where the marks are. Note that
there may be many curves which have the structure of twigs and distribution
of marks of any given diagram, so the diagrams do not necessarily uniquely
identify curves.

Figure 1: [4] The possible con�guration of twigs and marks for 5-pointed
curves.

It seems unintuitive that in a family of stable n-pointed curves, the num-
ber of twigs in the curve can be di�erent for di�erent curves in the family.
Example 2.12 will provide a family with this property, and will be referred
to later in the project.

Example 2.12. Let B = C− {1} and set

X = {(b, [s : t], [x : y : z]) ∈ B × P1 × P2 | by = x, sz = tx} (3)

We will write coordinates of X as (b, s,x). Let π : X → B be given by
π(b, s,x) = b, and de�ne the sections σ0, σ1, σ∞, σ∆ : B → X by

σ0(b) = (b, [0 : 1], [0 : 0 : 1])

σ1(b) = (b, [1 : 1], [b : 1 : b])

σ∞(b) = (b, [1 : 0], [b : 1 : 0])

σ∆(b) = (b, [b : 1], [b : 1 : 1])

(4)
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Notice that, in this notation, σα(b) has s-coordinate α, for α = 0, 1,∞,
and in the �rst two coordinates, σ∆ is the diagonal map. Example 2.16
motivates this notation more strongly. The maps have all been given in
terms of polynomials in their coordinates, so there can be no dispute that
these maps are morphisms of quasi-projective varieties.

For b 6= 0, the �bre is

Xb = π−1(b) =
{

(b, [s : t], [sb : s : tb]) | [s : t] ∈ P1
}

(5)

which is isomorphic to P1 via a projection from the s-coordinate. The marks
are 0, 1,∞ and [b : 1], which are distinct points if b 6= 0, 1. This is why we
removed the point 1 from B.

When b = 0, the �bre is

X0 = π−1(0) =
{

(0, [s : t], [0 : 1 : 0]) | [s : t] ∈ P1
}

∪
{

(0, [0 : 1], [0 : y : z]) | [y : z] ∈ P1
} (6)

Let S and X be the components in which s and x vary respectively. The
�bre X0 thus contains two isomorphic copies S,X of P1 which intersect at

v = (0, [0 : 1], [0 : 1 : 0]) ∈ S ∩X

Figure 2 shows the distribution of the marks on these two components, and
thus that the �bre is a stable 4-pointed curve.

v = [0 : 1]S = [1 : 0]X

σ1(0) = [1 : 1]S

σ∞(0) = [1 : 0]S

σ0(0) = [0 : 1]X

σ∆(0) = [1 : 1]X

X S

Figure 2: The �bre at b = 0 is a stable 4-pointed curve with two irreducible
components.

The stability condition (De�nition 2.8) corresponds precisely to the curve
being free of non-trivial automorphisms, so the only automorphism of the
curve is the identity morphism. The following argument is adapted from [4,
1.2.4].

We �rst prove that for any automorphism, each twig maps to itself and
each node maps to itself. This is done by induction on the number of twigs,
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letting n vary. Every curve has a twig c with zero or one node, because there
are no closed circuits. Then c is mapped to itself, since it has two or more
marks. If c has a node, then since the node is the only non-singular point
of c, it too must be mapped to itself. Then remove the twig, replace the
node with a mark, and proceed by induction. Finally, every twig has three
or more special points that are mapped to themselves, so the isomorphism
restricted to each twig is the identity, for three points uniquely determine an
isomorphism P1 → P1. In particular, notice that any twig with fewer than
three special points would admit a non-trivial automorphism, so the stability
condition is indeed required.

2.3 Removing marks

One very natural question to ask is whether we can just remove, say, the last
of the marks of a stable curve to get another stable curve. Formally, take
a stable (n + 1)-pointed curve (C; p1, . . . , pn+1), and consider the n-pointed
curve (C; p1, . . . , pn) given by removing the last mark pn+1. Checking our
de�nition of a stable curve, we see that the new n-pointed curve is automat-
ically a stable curve, unless the mark pn+1 was needed to ensure that every
twig has at least three special points.

Consider the case where pn+1 was needed for C to be stable. Let c be
the twig containing pn+1, which must have precisely two other special points.
Since n ≥ 3 by assumption, one of the two points must be a node. Therefore,
we have two cases to consider � either both of these points are nodes, or one
is a node and the other is a mark. In both cases, we contract the twig c to a
point. If one of the points was a mark, we de�ne this mark to be the point
to which c was contracted. See Figure 3 to see how this works in each case.
Given the curve (C; p1, . . . , pn), the new curve is called the contraction of C,
and is obtained by forgetting pn+1.

This procedure of removing a mark and contracting the resulting curve if
it is unstable may be done for a family, as stated in Theorem 2.13.

Theorem 2.13 (Adapted from [4, Proposition 1.3.4]). Let π : X → B be a
family of stable (n+ 1)-pointed curves with sections σ1, . . . , σn+1. Then there
exists a family π′ : X′ → B of stable n-pointed curves with sections σ′1, . . . , σ

′
n

and a morphism of quasi-projective varieties φ : X→ X′ such that

X X′

B B

π

φ

π′σ1,...,σn σ′1,...,σ
′
n
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q
c

7→

p

q

c

7→

p

Figure 3: [4, 1.3.3] The mark q has been removed from each of these 5-pointed
curves to produce an unstable 4-pointed curve. We contract each curve to
produce a new stable 4-pointed curve. The two cases of contraction each
involve contracting the twig c containing q to a point, which then becomes
either a node or a mark.

commutes (notice the section σn+1 does not appear in the diagram), and
moreover that the induced morphism Xb → X′b on the �bres restricts to an
isomorphism on any stable twig of (Xb;σ1(b), . . . , σn(b)) and contracts any
unstable twig to a point. The family X′ → B is unique up to isomorphism
with these properties.

Example 2.14. The family π : B×P1 → B with canonical sections τα(b) =
(b, α) for α = 0, 1,∞ is the family obtained by forgetting the fourth section
σ∆ from the family de�ned in Example 2.12. The associated morphism φ :
X→ B × P1 is given by

φ(b, s,x) = (b, s)

We can quickly verify the relevant properties. Commutativity of the
diagram follows from

π(b, s,x) = (π ◦ φ)(b, s,x) = b τα(b) = φ ◦ σα(b) = (b, α)

For b 6= 0, every �bre consists of one twig which remains stable after removing
the fourth mark. The morphism induced is an isomorphism because Xb was
seen to be isomorphic to P1 via the s-coordinate projection.

The interesting case is thus b = 0, when X0 = S∪X. The same argument
as for b 6= 0 will apply to S, giving an isomorphism S → π−1(b) ⊂ B ×

13



P1. Furthermore, the entire twig X, which becomes unstable after removing
σ∆(0), is mapped to ∞ ∈ S.

2.4 Adding marks

The procedure of forgetting a section has a natural inverse called stabilisation.
Given a stable n-pointed curve (C; p1, . . . , pn) and an additional point q ∈ C,
we consider the (n + 1)-pointed curve (C; p1, . . . , pn, q). Straight from the
de�nition of stable curve, we notice there is only one situation in which the
new curve is not stable, namely when the point q coincides with another
mark or node of the original curve. To produce a new stable curve, we must
insert a new twig on which the new mark q will reside. See Figure 4 to see
how this works in each case.

q

7→

q
c

p, q

7→
p

q

c

Figure 4: [4, 1.3.1] We have introduced a new mark q into each of these
stable 4-pointed curves, but it coincides with a special point of the curve.
We therefore stabilise each curve to produce a new stable 5-pointed curve.
Each of the cases involves adding a new twig c which has precisely three
special points on it. Therefore, up to isomorphism, it doesn't matter where
the points lie on c, so long as they are distinct.

Theorem 2.15 describes how the procedure of stabilising a curve with an
additional section is characterised for families of curves.

Theorem 2.15 (Adapted from [4, Proposition 1.3.2]). Let π : X → B be
a family of stable n-pointed curves with sections σ1, . . . , σn. Let δ : B → X
be an arbitrary additional section. Then there exists a family π′ : X → B

14



of stable (n + 1)-pointed curves with sections σ′1, . . . , σ
′
n+1 and a morphism

φ : X′ → X such that

X′ X

B B

π′

φ

πσ′1,...,σ
′
n,σ
′
n+1 σ1,...,σn,δ

commutes, and its restriction to φ−1(X − δ(B)) → X − δ(B) is an isomor-
phism. The family π′ : X′ → B is unique up to isomorphism with these
properties.

Example 2.16. We will now show that the family in Example 2.12 is the
stabilisation of the family of 3-pointed curves over B = C − {1} given by
B×P1 → B and sections τα(b) = (b, α) for α = 0, 1,∞, with the new section
δ(b) = (b, [b : 1]). The morphism φ : X→ B×P1 is given by (b, s,x) 7→ (b, s).
We have the following diagram.

X B × P1

B B

π

φ

πσ0,σ1,σ∞,σ∆ τ0,τ1,τ∞,δ

Commutativity from the diagram is immediate from

π(b, s,x) = π ◦ φ(b, s,x) = b φ ◦ σα(b) = τα(b) = (b, α)

φ ◦ σ∆(b) = δ(b) = (b, [b : 1])

for α = 0, 1,∞. Furthermore,

B × P1 − δ(B) =
{

(b, [s : t]) ∈ B × P1 | [s : t] 6= [b : 1]
}

φ−1(B × P1 − δ(B)) = {(b, [s : t], [x : y : z]) ∈ X | [s : t] 6= [b : 1]}
= {(b, [s : t], [sb : s : tb]) ∈ X | [s : t] 6= [b : 1]}

and φ is certainly an isomorphism when restricted to this domain.

2.5 Moduli space of stable curves

We saw that n-pointed curves (De�nition 2.1) are automatically stable n-
pointed curves in Example 2.10. In Theorem 2.17 however, we state the
result that motivates the de�nition of stable curves as an extension of n-
pointed curves in Section 2.1.
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Theorem 2.17. [4, Theorem 1.2.5] For n ≥ 3, there is a �ne moduli space
M0,n for stable n-pointed curves which is a smooth projective variety and
contains M0,n as a dense open subset.

This means that there is a universal family for stable n-pointed curves
U →M , so that every family of stable n-pointed curves is induced by a pull-
back from this family. We showed in Theorem 2.6 that there is a universal
family U0,n → M0,n for n-pointed curves, which is therefore isomorphic to
the pull-back from a unique morphism M0,n →M . This morphism naturally
embeds M0,n in M , and Theorem 2.17 states that the image, naturally iden-
ti�ed with M0,n, is a dense open subset of M . It is for this reason that we
denote this universal family as U0,n →M0,n.

We will not go through the construction of this moduli space in detail,
for this is beyond the scope of this dissertation. For a more complete sketch
construction, the reader should see [4, Section 1.4]. It is a fact, however, that
the universal family is given by the forgetful map M0,n+1 → M0,n, and the
moduli spaces may be constructed recursively. In Example 2.18, we argue
that we already know M0,3, which will form the base case of the recursion.
Example 2.19 then goes through the �rst step of the recursion and constructs
M0,4. Note that these examples only explain the construction of the spaces
M0,3 and M0,4. Though the same argument constructs M0,n for general
n ≥ 3, we are not proving that we have found the moduli space, or any other
of the properties claimed in Theorem 2.17.

Example 2.18. We will do the n = 3 case for this induction argument.
Any stable 3-pointed curve is isomorphic to the standard curve (P1; 0, 1,∞).
Therefore M0,3 = M0,3 is the family P1 → {∗} with sections 0, 1,∞. Given
Theorem 2.6, it is enough to convince yourself that every stable 3-pointed
curve is simply a 3-pointed curve from Section 2.1.

Example 2.19. Consider the pull-back of

P1

P1 {∗}

π

π

σ1,σ2,σ3

which yields a unique family over P1 up to isomorphism, which we will denote
P1 ×{∗} P1 → P1. We have a natural further section of this family given by

δ : P1 → P1 ×{∗} P1 δ(x) = (x, x)

We then have the ability to construct a new family of stable 4-pointed curves
with base space P1 by stabilising the family with this new section δ using
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Theorem 2.15. This yields a family X → P1 with sections τ1, . . . , τ4, and a
morphism φ : X→ P1 ×{∗} P1.

Let us consider what the �bres of this family are. The point x ∈ P1

has preimage in the pull-back P1 ×{∗} P1 given by {x} × P1, where x is
�xed. The preimage is clearly isomorphic to P1. The sections σ1, σ2, σ3 each
identify the points (x, 0), (x, 1), (x,∞) on the �bre, while the new section δ
identi�es the point (x, x). By construction of X → P1 as the stabilisation
of this family, the �bre Xx is the stabilisation of the curve {x} × P1 with
marks (x, 0), (x, 1), (x,∞), (x, x). If x = 0, 1,∞, the marks coincide, so the
stabilised family Xx will have an additional twig. In contrast, if x 6= 0, 1,∞,
the �bre Xx is formed of a single twig with four marks. See Figure 5 for
a diagram showing how the structure of the �bre Xx changes with di�erent
values of x.

0

1

∞

x 6= 0, 1,∞

x =∞

x = 1

x = 0

τ2

τ3

τ1

τ4

τ1

τ3

τ4

τ2

τ1

τ2

τ4

τ3

τ1

τ2

τ3

τ4

Figure 5: The �bre of X→ P1 at x ∈ P1 has two twigs if x = 0, 1,∞, and a
single twig otherwise. The distribution of the marks is di�erent on each of
the �bres X0,X1,X∞, so these 4-pointed curves are not isomorphic.

The construction in Example 2.19 may be summarised in the following
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diagram.

X P1 ×{∗} P1 P1

P1 P1 {∗}

φ

πτ1,...,τ4 δ

π

σ1,σ2,σ3

We will change our notation, using M0,3 = {∗}, M0,4 = P1 and M0,5 = X.

M0,5 M0,4 ×M0,3
M0,4 M0,4

M0,4 M0,4 M0,3

φ

πτ1,...,τ4 δ

π

σ1,σ2,σ3 (7)

The diagram (7) correctly indicates how the argument in Example 2.19 may
be generalised for n ≥ 3. The next stage is summarised in (9).

Corollary 2.20. The moduli space M0,n is (n− 3)-dimensional.

Proof. By Theorem 2.17, M0,n ⊂M0,n is an open subset. In (2), we saw how
M0,n is given by an open subset of Pn−3. ThereforeM0,n is (n−3)-dimensional
as desired.

We started this section by observing that the isomorphism classes of or-
dered distinct quadruples in P1 are in bijective correspondence with P1 −
{0, 1,∞}. In Section 2.1, we were able to formally relate the geometric
structure of this quasi-projective variety to the quadruples. Now, we have
extended our de�nition of 4-pointed curves so that M0,4 = P1, where the
points 0, 1,∞ correspond to the 4-pointed curves with two twigs, as in Fig-
ure 5. In Section 4, we will see how well our extended de�nition relates the
geometry of the moduli spaces to the geometry of the pointed curves.
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3 Stable Maps

Recall from the Introduction that we were looking at ordered n-tuples on a
curve because we wanted to look at degree-d maps that parametrise curves in
Pr. We were going to consider the maps, i.e. parametrisations, µ : P1 → Pr
with speci�ed points of the source space pi ∈ P1, and count those maps which
satisfy µ(pi) = qi, where qi are points of Pr that we have �xed. Having now
considered the moduli space of collections of points pi ∈ P1 on a curve, it is
time to start looking at the maps as above.

In Section 2.2, we extended the de�nition of a curve to a tree of projective
lines in order to get a better moduli space. We will do the same here, without
going through the motivational steps. The following de�nitions may be found
in [4, Section 2.3].

De�nition 3.1. An n-pointed map is a morphism µ : C → Pr, where C =
(C; p1, . . . , pn) is a tree of projective lines with n distinct marks which are
smooth points of C.

An isomorphism of n-pointed maps from µ : C → Pr to µ′ : C ′ → Pr is
an isomorphism φ : C → C ′ which preserves the marks and µ = µ′ ◦ φ.

As in Section 2.1, we will be working with families to count the isomor-
phism classes of the maps. This allows us to use the structure of the moduli
space, rather than simply a bijection.

De�nition 3.2. A family of n-pointed maps is a diagram

X Pr

B

π

µ

σ1,...,σn

where π is a �at family of trees of smooth rational curves and the sections σi
are disjoint and do not meet the singularities of the �bers of π. Thus, given
b ∈ B, the map µ restricted to the �ber gives an n-pointed map µb : Xb → Pr
with marks σi(b).

We must now restrict our notion of map and introduce the notion of
Kontsevich stability. Since this is the only notion of the stability of a map
we will use in this dissertation, we shall simply refer to the stability of a map.

De�nition 3.3. An n-pointed map µ : C → Pr is stable if, and only if, any
twig of C that is mapped under µ to a single point has at least three special
points on it.
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Let us compare the de�nitions of the stability of a curve (Section 2.2)
and of the stability of a map. It is important to note that the source curve
C of a stable map does not need to be itself stable as a curve. Indeed any
map which is constant on no twig is stable, regardless of where the marks
are placed. Thus, the stability of a curve becomes relevant precisely when
and where a map is constant.

Example 3.4. Consider the family π : X → B of stable curves from Ex-
ample 2.12 given by (3). In (4), we de�ned four disjoint sections σα for
α = 0, 1,∞,∆. All four sections are required for the family of curves to be
stable. In the following, we will look at di�erent morphisms µ : X→ Pr and
see which sections σα are required for the family of maps to be stable.

Take the following two morphisms µr : X→ Pr for r = 1, 2.

µ1(b, s,x) = s ∈ P1 µ2(b, [s : t],x) = [s2 : s2 : t2] ∈ P2

A quick check of equations (5) and (6) will show that only the �bre X0 at
b = 0 has a twig that µr maps to a single point. We see that

µ1 : X → {[0 : 1]} ∈ P1

so in order for the family with µ1 to be stable, we must choose the sections
σ0 and σ∆ to guarantee stability, for σ0(0), σ∆(0) ∈ X. Thus we can produce
a family of stable 2-pointed maps (X → B;σ0, σ∆;µ1). We can include the
other sections σ1, σ∞ to yield families of stable 3 and 4-pointed maps, but
these sections are not required to ensure the stability of the family.

Similarly, there is only one twig mapped to a single point, namely µ2 :
X → {[0 : 0 : 1]}. Thus, we must again include the sections σ0, σ∆ in order
for this family to be stable, for these provide marks on the twig X of the
�bre X0.

The motivation for stability is found in Theorem 3.5.

Theorem 3.5 ([4, Lemma 2.3.1]). An n-pointed map is stable if, and only
if, it has a �nite number of automorphisms.

The reader should follow the reference to see the proof. The forward
direction involves looking at the map induced on the function �elds. We will
however demonstrate the proof of the reverse direction for the map µ2|X0

from Example 3.4, which captures the key idea of the argument.

Example 3.6. Let us use the notation from Figure 2, since we will only deal
with the �bre X0. We write X0 = S ∪X, where S,X ∼= P1 have coordinates
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[s : t]S, [y : z]X respectively, and where v = [0 : 1]S = [1 : 0]X is the unique
point lying on both twigs.

The sections σ0, σ∆ give us the marks p0 = [0 : 1]X , p∆ = [1 : 1]X on
the twig X. Notice how any automorphism of X that preserves v ∈ S ∩ X
extends to an automorphism of X0. De�ne the automorphism ψa : X0 → X0

on X0 to be given by the identity on S and by [y : z]X 7→ [y : az]X on X. The
reader will notice that ψa is compatible with µ2|X0 , and that ψa(p0) = p0.
Moreover, ψa(p∆) = [1 : 1/a]X , so for a 6= 1, ψa does not preserve the mark
p∆. This means that if we fail to include the second mark p∆, we get an
in�nite family of automorphisms {ψa}.

A similar family may be produced when p0 is not included. It is straight-
forward algebra to show that, in fact, the only non-trivial automorphism of
(X0; p0, p∆;µ2|X0) is [s : t]S 7→ [s : −t]S on S and the identity on X.

3.1 The coarse moduli space

We would like to construct a �ne moduli space for stable n-pointed maps,
however this is not possible. The existence of non-trivial automorphisms,
such as the one we found in Example 3.6, means that no such moduli space
could exist. The relationship between automorphisms and moduli spaces is
not quite as simple as the previous sentence suggests, and [3, Example 2.1]
provides a neat example as evidence.

Nonetheless, we will have to generalise the concept of moduli space for
us to be able to use, or even �nd, any structure on the space of isomorphism
classes of stable n-pointed maps.

Before, in De�nition 2.5, we had a family U/M with a universal pull-back
property. Our new weaker de�nition will use the objectM and the pull-back
property, and we will discard U . The pull-back property, of course, does not
make sense without U , so it is converted into the following concept.

De�nition 3.7. [1, Example 5.2] A morphism between families X/B and
X′/B′ of stable n-pointed curves is a pair of morphisms X→ X′ and B → B′

such that
X X′

B B′

π π′σ1,...,σn σ′1,...,σ
′
n

commutes, and moreover that X is a pull-back of X′/B′ along the morphism
B → B′.

Let M = M0,n be the �ne moduli space from Theorem 2.6. We will
isolate the properties of M that form the weaker de�nition of moduli space.
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Given any family X/B, there is a unique morphism B → M such that X/B
is induced as the pull-back along this morphism. Denote this morphism
ΨM(X/B) : B →M .

Proposition 3.8. The �ne moduli space M = M0,n satis�es the following
properties.

1. The assignment ΨM is compatible with morphisms of families, so the
following diagram commutes.

X X′

B B′

M
ΨM (X/B) ΨM (X′/B′)

That is, ΨM is a functor

{families of stable n-pointed curves} −→ Hom (·,M)

2. The functor ΨM induces a bijection

{C/{∗}}
isomorphisms

←→ Hom ({∗},M)

3. (Universal property) Suppose N is any quasi-projective variety with
another assignment of morphisms ΨN(X/B) : B → N , which is com-
patible with morphisms of families so as to become a functor. Then
there exists a unique morphism ϕ : M → N such that the following
diagram commutes for all families X/B.

X

B M

N

ΨM (X/B)

ΨN (X/B) ϕ

(8)

Proof. 1. Given such a morphism between two families, the family X/B
is the pull-back of the family X′/B′ along B → B′. By de�nition
of M , the family X′/B′ is the pull-back of the universal family along
ΦM(X′/B′). It follows that X/B is the pull-back of the universal family
along the composition B → B′ → M , and hence, by uniqueness, that
this composition is ΦM(X/B).
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2. The inverse assignments are the pull-backs of the morphisms {∗} →M .

3. We are given a canonical morphism ΨN(U0,n/M) : M → N . Since
ΨN is compatible with morphisms, and in particular with pull-back
morphisms, diagram (8) is commutative for this choice of morphism
M → N , showing existence. The uniqueness claim follows from the
commutativity of the following diagram, which is (8) applied to the
universal family.

U0,n

M M

N

IdM

ΨN (U0,n/M)
ϕ

This leads us to de�ne a coarse moduli space for families of maps by
adapting the statements of Proposition 3.8 to this new setting. The de�-
nitions of pull-backs and of morphisms translate easily to stable maps. A
reader who is interested instead in the category-theoretic de�nitions of �ne
and coarse moduli spaces should seek [3, Chapter 2].

De�nition 3.9. A coarse moduli space of stable n-pointed maps to Pr of
degree d is a quasi-projective variety M = M0,n(Pr, d) with an associated
assignment ΨM satisfying the following properties. To every family of maps
(X/B;µ), we assign a morphism

ΨM(X/B;µ) : B →M

1. This assignment is compatible with morphisms of families, so that the
following diagram is commutative. That is, ΨM is a functor between
appropriate categories.

Pr

X X′

B B′

M

µ µ′

ΨM (X/B) ΨM (X′/B′)
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2. The functor ΨM induces a bijection

{(C/{∗};µ)}
isomorphisms

←→ Hom ({∗},M)

3. (Universal property) Given any other quasi-projective variety N and an
assignment ΨN compatible with morphisms, there is a unique morphism
ϕ : M → N such that the following diagram commutes for all families
(X/B;µ).

X Pr

B M

N

µ

ΨM (X/B;µ)

ΨN (X/B;µ) ϕ

Part 2 of De�nition 3.9 ensures that M indeed corresponds to the iso-
morphism classes, as desired. Parts 1 and 3 correspond to giving the correct
structure to M , and this is seen in the way they are each more abstract and
natural.

Unsurprisingly, this de�nition will be followed by the existence theorem
for the coarse moduli space.

Theorem 3.10. [4, Theorems 2.3.2, 2.3.3] There exists a coarse moduli space
M0,n(Pr, d) parametrising the isomorphism classes of stable n-pointed maps
to Pr of degree d. M0,n(Pr, d) is a projective normal irreducible variety.

3.2 Evaluation maps

Since morphisms of stable maps preserve their marks, we can de�ne the
following important maps.

De�nition 3.11. For each i, there is a natural map

νi : M0,n(Pr, d)→ Pr

(C; p1, . . . , pn;µ) 7→ µ(pi)

called the i-th evaluation map.

In the above de�nition, we have implicitly used part 2 of De�nition 3.9 to
de�ne νi. For this to work, we require that νi is well-de�ned on isomorphism
classes of stable maps. This will follow from Proposition 3.12.
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Proposition 3.12. The evaluation maps are morphisms of quasi-projective
varieties.

Proof. We will use the universal property of the coarse moduli spaceM0,n(Pr, d).
To any family (X/B;µ), assign the morphism µ ◦ σi : B → Pr. Since marks
are preserved by morphisms, this assignment is compatible with morphisms,
as is shown in the following commutative diagram.

Pr Pr

X X′

B B′

µ µ′

σi σ′i

The universal property yields a morphism νi : M0,n(Pr, d) → Pr. Finally,
since our assignment gives the desired values on stable maps (over a point),
so too will the morphism νi on the isomorphism classes.

3.3 Forgetful morphism

Much like the forgetful morphism M0,n+1 → M0,n from Section 2.5, whose
existence was guaranteed by Theorem 2.13, we have a forgetful morphism
ε : M0,n(Pr, d) → M0,n for n ≥ 3. Given any stable n-pointed map µ :
C → Pr in M0,n(Pr, d), losing the map µ : C → Pr and keeping the tree
of projective lines C with the marks p1, . . . , pn ∈ C will yield an n-pointed
curve. By contracting twigs with fewer than three special points, we will
get a uniquely de�ned stable n-pointed curve in M0,n. We have again used
part 2 of De�nition 3.9 to de�ne our map ε. We have described ε as a map
between sets, but in fact ε is a morphism of varieties.

3.4 Dimension

In this section, we will provide an informal argument for Proposition 3.13.
Many of the arguments are incomplete, and there are references for the claims
that are provided with no proof at all. This is a condensed version of the
reasoning provided by Kock and Vainsencher in [4, Section 2].

Proposition 3.13. [4, 2.3.4] The dimension of M0,n(Pr, d) is

dimM0,n(Pr, d) = (r + 1)(d+ 1)− 1− 3 + n

= rd+ r + d+ n− 3
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We start by considering the maps P1 → Pr of degree d. Recall the degree
is de�ned as in De�nition 1.1, and, as stated in Section 1.1, degree-d maps
are parametrised by r+ 1 binary forms of degree d, such that they do not all
simultaneously vanish anywhere, and up to constant factor [4, 2.2.1]. This
de�nes a subset

W (r, d) ⊂ P(
r⊕
i=0

d⊕
j=0

Cxjyd−j)

The dimension of the ambient space is (r + 1)(d + 1) − 1, for we are in the
projective space of a (r + 1)(d+ 1)-dimensional vector space.

It is a fact that W (r, d) is a Zariski open subset [4, 2.2.1], and hence we
get that dimW (r, d) = (r + 1)(d+ 1)− 1.

We can construct a family of maps (without any marks) over W (r, d),
where on the �bre of f ∈ W (r, d), we set µ = µf : P1 → Pr to be given by
the evaluation f(x, y) of the binary form at the point of [x : y] ∈ P1.

W (r, d)× P1 Pr

W (r, d)

µ

Since no binary form can induce a constant map, this is automatically a
family of stable 0-pointed maps. Therefore there exists a map ϕ : W (r, d)→
M0,0(Pr, d) by the de�nition of the coarse moduli space. Moreover, for f, g ∈
W (r, d), we have ϕ(f) = ϕ(g) if, and only if, the binary forms f, g induce
isomorphic maps on their �bres.

Suppose the map µf has no automorphisms. That is, Aut (µf ) is trivial.
Then the preimage ϕ−1(f) will consist precisely of the di�erent representa-
tions of µf under di�erent coordinates. This suggests ϕ−1(f) ∼= Aut (P1),
and in particular that dimϕ−1(f) = 3.

It turns out that there is an open subset of W (r, d) which consists of
automorphism-free binary forms [4, Proposition 2.1.8 and Lemma 2.1.14],
and this gives us [4, 2.1.16]

dimM0,0(Pr, d) = dimW (r, d)− dim Aut
(
P1
)

= (r + 1)(d+ 1)− 1− 3

where we have used that ϕ surjects onto an open subset of M0,0(Pr, d).
Finally, the subset M0,n(Pr, d) of maps whose source space has only one

twig is open in M0,n(Pr, d) [2, Section 0.4]. On this subset, we can see
that choosing the position of the marks is a free choice, subject to avoiding

26



the other marks, and thus each mark should correspond to an additional
dimension. In this way, we get the desired result [4, 2.3.4] as

dimM0,n(Pr, d) = dimM0,0(Pr, d) + n

= (r + 1)(d+ 1)− 1− 3 + n
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4 The Boundary

We have now seen the moduli spaces M0,n and M0,n(Pr, d). We took some
time to �nd a way to extend our de�nition of curve so that we get a projective
variety, rather than a quasi-projective variety (c.f. Section 2.2). It is now
that we see how this is useful.

From Theorem 2.17, we know that M0,n is an open dense subset of M0,n.
In this section, we look at the structure of the boundary M0,n \M0,n. It is
immediate from de�nitions that any point in the boundary corresponds to a
reducible curve; that is, the �bre of the point is a curve with more than one
twig.

Example 4.1. We will look at the points of M0,5 which correspond to
curves which are made of two twigs, one with marks σ1, σ2, σ3 and the other
twig with marks σ4, σ5, as shown in Figure 6(A). I will denote this subset
D({1, 2, 3}, {4, 5}) ⊂M0,5.

Figure 6(B) contains three curve con�gurations with two nodes, and these
occur when two of the marks σ1, σ2, σ3 would have coincided. Thus these
three additional curves are really just special cases, and they should corre-
spond to points in D({1, 2, 3}, {4, 5}).

Thus informally, D({1, 2, 3}, {4, 5}) contains all curves that are in Fig-
ure 6. We can, in fact, write down a concrete description of these curves as
follows.

Consider the following diagram, which is a repeat of diagram (7) for the
second case of recursion when constructing the moduli spaces. Notice that
(9) may be concatenated with (7).

M0,6 M0,5 ×M0,4
M0,5 M0,5

M0,5 M0,5 M0,4

πδ σ1,σ2,σ3,σ4 (9)

The set D({1, 2, 3}, {4, 5}) contains those points at which the �fth section δ
coincided with σ4, before stabilisation. Thus

D({1, 2, 3}, {4, 5}) = {x ∈M0,5 | δ(x) = σ4(x)}
= {x ∈M0,5 | x = (σ4 ◦ π)(x)}

(10)

The advantage of (10) is that we can easily see that D({1, 2, 3}, {4, 5}) is
a closed subset of M0,5, and thus is a projective variety.
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σ1

σ2

σ3 σ4

σ5

(A)

(B)

σ1

σ2

σ3

σ4

σ5 σ3

σ1

σ2

σ4

σ5 σ2

σ3

σ1

σ4

σ5

Figure 6: (A) describes a con�guration of stable 5-pointed curves with one
node. (B) describes three con�gurations of stable 5-pointed curves with two
nodes. Each of the con�gurations in (B) corresponds to a unique curve in
M0,5. The curves in (B) are obtained by letting marks on the left twig of
(A) converge, and so should be treated as special cases of (A).

De�nition 4.2. [4, 1.5.4] Denote by [n] the set of n marks of a curve. Let
A,B be disjoint subsets of [n] with [n] = A ∪ B, and each with at least
two elements. The boundary divisor D(A,B) is the irreducible projective
subvariety of M0,n whose general elements correspond to curves with two
twigs, with the marks of A on one twig and the marks of B on the other.

Thus, in Example 4.1, the general points correspond to those curves that
look like Figure 6(A). The points that correspond to the curves in Figure 6(B)
are required in order thatD({1, 2, 3}, {4, 5}) is a projective variety, though we
did not show this. All boundary divisors may be de�ned using the recursive
structure ofM0,n from Example 2.19 to give an explicit formula like (10), and
it is an instructive exercise to �nd the explicit formula for a few examples.

Throughout, we will assume that A,B satisfy the conditions in De�ni-
tion 4.2. We will de�ne a divisor later, and we will see that a boundary
divisor is indeed a divisor. First, we will state and provide a partial proof of
Theorem 4.3, which is fundamental to understanding the boundary.

Theorem 4.3. [4, 1.5.10] Given A,B subsets of [n], we have a canonical
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isomorphism
D(A,B) ∼= M0,A∪{x} ×M0,B∪{x}

where M0,A∪{x} is the moduli space of stable curves with marks labeled by
elements of A ∪ {x}, and M0,B∪{x} with marks B ∪ {x}.
Proof. [4, 1.5.10] The key insight in this proof is shown in Figure 7, where
we see how each of the moduli spaces in the product encode the information
of the curve in the boundary divisor. In particular, the location of the node
of the reducible curve corresponds to the location of the sections x.

A B
←→

A

x

×
B

x

Figure 7: [4, 1.5.10] Boundary curves in D(A,B) correspond to curves in the
product M0,A∪{x} ×M0,B∪{x}, and vice versa.

Take the family over D(A,B), and forget all but one of the marks of
B. Denote the remaining mark of B by x. Notice that x is really just
the intersection point of the two twigs now. This gives us a family of stable
curves with |A∪{x}| marks. Thus by the universal property, we get a unique
morphism D(A,B)→M0,A∪{x}.

We similarly get a canonical morphism D(A,B)→M0,B∪{x}, and can use
this to get a unique morphism to the product M0,A∪{x} ×M0,B∪{x}.

Conversely, a point of the productM0,A∪{x}×M0,B∪{x} gives an n-pointed
curve, by joining the two curves at the points marked x with a node. Going
through the precise construction of how to get a new curve by identifying
the two points at a node is beyond the scope of this dissertation, so we
will assume that this operation is possible, and that it is possible to do so
in a family. Thus we get a family of n-pointed curves over the product
M0,A∪{x} ×M0,B∪{x}, and hence a morphism M0,A∪{x} ×M0,B∪{x} → M0,n,
which by construction lands in D(A,B).

One can verify that both compositions of these morphisms give the iden-
tity, hence we have found the desired isomorphism.

Example 4.4. Take D({1, 2, 3}, {4, 5}) from Example 4.1. By Theorem 4.3,
there is a canonical isomorphism

D({1, 2, 3}, {4, 5}) ∼= M0,4 ×M0,3

∼= P1
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Notice that we had to add three degenerate curves in Figure 6(B) to get a
projective variety, much like how we added three degenerate curves to M0,4

to get the projective variety M0,4. These two sets of three degenerate curves
correspond to each other via the isomorphism.

Corollary 4.5. The projective variety D(A,B) ⊂M0,n has dimension n−4.

Proof. Recall dimM0,n = n− 3 from Corollary 2.20. Then

dimD(A,B) = dim
(
M0,A∪{x} ×M0,B∪{x}

)
= dimM0,A∪{x} + dimM0,B∪{x}

= |A ∪ {x}| − 3 + |B ∪ {x}| − 3

= |A|+ |B| − 4

= n− 4

Consider the following two examples of intersections of boundary divisors.

Example 4.6. In M0,5, the intersection

D({1, 2, 3}, {4, 5}) ∩D({1, 2}, {3, 4, 5})

is precisely the leftmost curve in Figure 6(B), whereas the intersection

D({1, 2, 3}, {4, 5}) ∩D({1, 5}, {2, 3, 4})

is empty.

The results of Example 4.6 hold true in general, in that the intersection
of two boundary divisors is either a codimension-2 subvariety or empty [4,
Remark 1.5.7]. Further intersections continue in a similar fashion, with each
additional node contributing a further codimension. This leads to a strat-
i�cation of the boundary [4, Example 1.5.2]. We do not pursue this idea
further in this dissertation.

4.1 Weil Divisors

We are now in a position to de�ne a divisor, and to see thatD(A,B) is indeed
a divisor as we claimed earlier. There are, in fact, three relevant de�nitions or
notions of divisors. These are Weil divisors, Cartier divisors and line bundles
or invertible sheaves with a rational section. In the context of a smooth
variety, these concepts are equivalent, and so they are the same for M0,n.
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We will de�ne and work exclusively with the simpler of the de�nitions, that
of the Weil divisor. As a result, there will be moments where we will quote
properties that follow from the other de�nitions, and it will be less intuitive
why these are true. We will be explicit when we use these properties.

De�nition 4.7. [6, Section 14.2] Let X be a smooth projective variety. A
Weil divisor is a formal sum of irreducible codimension 1 subvarieties of X

D =
∑
Y⊂X

nY Y

where nY ∈ Z, with �nitely many nY nonzero.

The Weil divisors form an Abelian group Weil (X). We showed in Corol-
lary 4.5 that D(A,B) has codimension 1, and I claimed that it is irreducible,
hence D(A,B) is one of the possible summands of a divisor, and is itself a
divisor.

De�nition 4.8. The support of a divisor
∑
nY Y is ∪{Y | nY 6= 0}.

We would like to consider linearly equivalent divisors. We will (infor-
mally) de�ne a subgroup of principal divisors, and two divisors shall be
deemed linearly equivalent if they di�er by a principal divisor. We will de-
note the linear equivalence of divisors as D ∼ D′, and the quotient group as
Cl (X) = Weil (X) / ∼, which is called the divisor class group.

Take any rational function f on X which has a reciprocal in K(X). There
are valuations vY (·) which give integers corresponding to the following intu-
ition. If vY (f) > 0, then f has a zero of order vY (f) on Y , and if vY (f) < 0,
then f has a pole of order vY (f) on Y [5, Lecture 1]. For P1, this intuition
is exactly correct, where Y = {p} is a point of P1 and vY (f) is the order of
the zero or pole of the meromorphic function f at p. The principal divisor
of f is

(f) =
∑
Y⊂X

vY (f) · Y

It is a fact that K(X)× → Weil (X) is a group homomorphism, so that the
principal divisors form a subgroup as desired [5, Lemma 1.5].

Example 4.9. Let p = [p1 : p2], q = [q1 : q2] be any two distinct points in
P1. De�ne the meromorphic function f : P1 \ {q} → C by

f([x : y]) =
p2x− p1y

q2x− q1y

Then f has a zero at p and a pole at q, each of order 1. It follows that p− q
is a principal divisor.
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Example 4.10. Now M0,4
∼= P1 and D(A,B) corresponds to the points

0, 1,∞ under the isomorphism, for the di�erent choices of A and B. Thus
we have just found that

D({1, 2}, {3, 4}) ∼ D({1, 3}, {2, 4}) ∼ D({1, 4}, {2, 3}) (11)

This equivalence is the backbone of the proof of Kontsevich's formula.

Example 4.11. Indeed, the degree map deg : Cl (P1) → Z is a group iso-
morphism, where

deg

∑
p∈P1

np · p

 =
∑
p∈P1

np

It is not hard to check that deg is a well-de�ned epimorphism. This is a
consequence of meromorphic functions having the same number of zeros as
poles. The map is injective because any two divisors with the same degree
are linearly equivalent. This follows from Example 4.9 and the transitivity
of ∼.

The �nal concept we need is the pull-back of a divisor. Unfortunately, we
cannot appreciate the contents of what the pull-back of a divisor is without
the other de�nitions of divisor. Consequently, we will not de�ne what the
pull-back of a divisor is in general, and will instead only look at the case that
interests us. We will adapt [4, 1.5.11] so that it becomes our de�nition of a
pull-back, rather than the argument provided there. The intuition provided
below is similar to Kock and Vainsencher's argument.

The morphism we want to pull back is the forgetful morphism ε : M0,n+1 →
M0,n. This morphism can be thought of either as the projection map in the
universal family of n-pointed curves, or as the map forgetting the last mark
and stabilising. Due to the recursive structure of the moduli spaces, these
are easily seen to be equivalent.

Let the mark we are forgetting be q, and let D(A,B) be a boundary
divisor of M0,n. We will �rst consider what the preimage of D(A,B) is. On
the general curve in D(A,B), the point q could either lie on the A-marked
twig, or on the B-marked twig. This motivates the claim that

ε−1D(A,B) = D(A ∪ {q}, B) ∪D(A,B ∪ {q})

We can check that this also matches our intuition of what happens for the
curves with more than two twigs. For example, when q is on the intersection
of the two twigs of the general curve, then the preimage is the curve with
three twigs, the middle of which contains two nodes and q.
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We will de�ne the pull-back of D(A,B) to be

ε∗D(A,B) = D(A ∪ {q}, B) +D(A,B ∪ {q})

Notice the support of the pull-back divisor is the preimage we found.
We need the following important fact about pulling back divisors.

Proposition 4.12. If D ∼ D′ are linearly equivalent, then the pull-back
divisors ε∗D ∼ ε∗D′ are also linearly equivalent.

Combining the results of Section 4 gives us the following theorem.

Theorem 4.13. [4, 1.5.14] Let n ≥ 4. Label four of the marks of M0,n as
i, j, k, l. Then ∑

i,j∈A
k,l∈B

D(A,B) ∼
∑
i,k∈A
j,l∈B

D(A,B) ∼
∑
i,l∈A
j,k∈B

D(A,B)

Proof. Notice that∑
1,2∈A
3,4∈B

D(A,B) = ε∗n · · · ε∗5D({1, 2}, {3, 4})

is the composition of pull-backs of the morphisms that forget each of the other
marks. This can be shown by induction on n. In Example 4.10, we showed
that the divisors inM0,4 are linearly equivalent. Then Proposition 4.12 gives
the desired linear equivalences.

4.2 The Boundary of the Moduli Space of Maps

The above work with the boundary of M0,n can be repeated for M0,n(Pr, d).
We will quickly summarise the main results given in [4, Section 2.7], and our
exposition of them will not di�er hugely from Kock and Vainsencher's work.

Be warned that M0,n(Pr, d) is not a smooth variety, so we do not have an
equivalence between the di�erent de�nitions of divisor. Any Cartier divisor
of M0,n(Pr, d) is a Weil divisor however [5, Lecture 2, De�nition 2.3], so we
can still state the following results using Weil divisors. Later, we will be
restricting our attention to a smooth subset of M0,n(Pr, d), so this no longer
is a problem.

De�nition 4.14. [4, 2.7.1] Let A,B ⊂ [n] with A∪B = [n] and dA+dB = d,
and assume |A| ≥ 2 if dA = 0, and |B| ≥ 2 if dB = 0. Let D(A,B; dA, dB)
be the subvariety whose general points correspond to maps µ with a domain
C = CA ∪CB with two twigs, where the marks of A lie on CA and the marks
of B lie on CB, and where the restriction µ|CA

is a map of degree dA and
µ|CB

is of degree dB.
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Proposition 4.15. [2, 6.1] The subvariety D(A,B; dA, dB) ⊂ M0,n(Pr, d) is
irreducible and of codimension 1, so that it is an (irreducible) Weil divisor.

A B

dA dB

Figure 8: [4, 2.7.1] The boundary divisor D(A,B; dA, dB) ⊂M0,n(Pr, d) will
be drawn as above, with the marks of A labeling the marks on the left twig,
and the degree of µ|A the map restricted to the A-twig drawn below the twig,
and likewise for B.

Proposition 4.16. ([2, 6.2] and [4, 2.7.4]) Suppose that A,B 6= ∅. Then
D(A,B; dA, dB) is canonically isomorphic to the �bre product of

M0,A∪{x}(Pr, dA)

M0,B∪{x}(Pr, dB) Pr
νx

νx

As in Theorem 4.3, this isomorphism arises as the gluing map, where the
domains are glued at the additional mark x. We need µ(x) ∈ Pr to be well-
de�ned, hence taking the �bre product, rather than the ordinary product.

De�nition 4.17. Let n ≥ 4. The pull-back along the forgetful morphism
ε : M0,n(Pr, d) → M0,n from Section 3.3 of the divisor D(A,B) ⊂ M0,n is
given by

ε∗D(A,B) =
∑

dA+dB=d

D(A,B; dA, dB)

Notice that |A|, |B| ≥ 2 is implied because we are considering a boundary
divisor of M0,n. Notice also that the support of the pull-back divisor is the
preimage ε−1D(A,B).

Theorem 4.18. [4, 2.7.6] Let n ≥ 4. Let i, j, k, l be four of the marks
of M0,n(Pr, d). The pull-back divisor of D({i, j}, {k, l}) ⊂ M0,4 along the
composition of forgetful morphisms M0,n(Pr, d)→M0,n →M0,4 is given by

D(ij, kl) =
∑
i,j∈A
k,l∈B

dA+dB=d

D(A,B; dA, dB)
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Then Proposition 4.12 and Theorem 4.13 give us

D(ij, kl) ∼ D(ik, jl) ∼ D(il, jk)
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5 Kontsevich's Formula

We are now in a position to sketch the proof of the formula. We will be
following the proof provided in [4, Sections 3.2 and 3.3] very closely, however
we will refer to what we have shown or stated in this dissertation, as opposed
to the wider range of results available to Kock and Vainsencher.

Theorem (Kontsevich). [4, Theorem 3.3.1] Let Nd be the number of rational
curves of degree d passing through 3d−1 general points in the plane P2. Then
N1 = 1 and for all d,

Nd +
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−1

)
· d2

ANdA ·NdB · dAdB

=
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−2

)
· dANdA · dBNdB · dAdB

(1)

Proof. [4, Proposition 3.3.1] Take two lines L1, L2 in P2 and 3d − 1 points
Q1, . . . , Q3d−2 ∈ P2 in general position. By this, we mean

1. L1 6= L2

2. Qi /∈ Lj

3. Of the points Q1, . . . , Q3d−2, L1 ∩ L2,

• No three are colinear.

• No six lie on a conic.

• And, in general, no 3e such points lie on a degree-e curve, for
e < d.

The points Q1, . . . , Q3d−2, L1 ∩ L2 will be the 3d − 1 general points in the
statement of the theorem.

Let n = 3d. We will be working inM0,n(P2, d), and we will label the marks
m1,m2, p1, . . . , pn−2. De�ne the subset Y ⊂ M0,n(P2, d) to be those stable
maps which map pi to Qi and mj into Lj, using the part 2 of De�nition 3.9.
We can write Y as an intersection of preimages of the evaluation maps from
Proposition 3.12

Y = ν−1
m1

(L1) ∩ ν−1
m2

(L2) ∩ ν−1
p1

(Q1) ∩ · · · ∩ ν−1
pn−2

(Qn−2)

so Y is a subvariety of M0,n(P2, d).
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In fact, Y is a curve. Kock and Vainsencher argue that the preimage of a
line in P2 has codimension 1 and the preimage of a point has codimension 2
using the �atness of the evaluation maps. They then use the generality of
the chosen points and lines to show that each intersection contributes its
codimension, so that Y is of codimension 2(n − 2) + 1 + 1 = 6d − 2. By
Proposition 3.13, the ambient space has dimension 3d + n − 1 = 6d − 1,
which gives that Y is indeed a curve. For example, in the d = 2 case, we are
working in M0,6(Pr, 2) of dimension 11, and Y has codimension 10.

In the proof, we will be looking at the intersection of Y and the boundary
divisors. According to Kock and Vainsencher, the intersection with each
boundary divisor occurs in a smooth open subset M

∗
0,n(P2, d) ⊂M0,n(P2, d).

The subset M
∗
0,n(P2, d) is interesting in its own right, and is, for example, a

�ne moduli space for a restricted category of stable maps [2, Theorem 2 (iii)].
It is relevant to us, however, because now Weil divisors and Cartier divisors
are equivalent concepts when discussing the intersection. It is the fact we are
working in this subset that also guarantees the maps µ in the intersection
are birational onto their image, and hence that we are counting the correct
objects. A full justi�cation may be found in [4, Sections 3.4 and 3.5].

Kock and Vainsencher also argue that the generality of the points and lines
implies the intersection with each boundary divisor is a transverse intersec-
tion. This translates to the fact that the intersections Y ∩ D(A,B; dA, dB)
are divisors in Y . Since Y is a curve, this means that the intersection is
a �nite collection of points, and the corresponding divisor in Y is the sum
of those points. It is intuitive that if two divisors are linearly equivalent in
the larger space X, then when restricted to a smaller space Y ⊂ X, they
remain linearly equivalent. The intuition is that any principal divisor (f) in
X should become a principal divisor (f |Y ) in Y .

We have not been overly precise in the above few paragraphs, but the
result is that the linear equivalence in Theorem 4.18 becomes the following
identity.

Y ∩D(m1m2, p1p2) ∼ Y ∩D(m1p1,m2p2) (12)

The strategy of the remaining part of the proof is to count the number of
points, or possible maps, in each side of the linear equivalence. The desired
recursive relationship (1) will be what we get when setting the number of
such maps on either side of the equivalence to be equal. For motivation on
why we expect each side to have the same number of points, consider the
isomorphism found in Example 4.11, where the number of points uniquely
determines the divisor up to linear equivalence.

Example 5.1. We will count the maps in the intersection for the d = 2 case.
Kock and Vainsencher do this in their proof [4, Proposition 3.2.2], and it is
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an e�ective way to see how the argument works.
First, let us list each of the irreducible boundary divisors that make up

D(m1m2, p1p2), as is done in Figure 9. We will look at each irreducible
boundary divisor individually, and count the number of maps in the inter-
section. It is, fortunately, the case that the intersection of any two distinct
irreducible boundary divisors and Y is empty, so this is not something we
need to consider. This follows because such an intersection has codimension 2
in Y (see Example 4.6), and is thus empty.

m1
m2 p1

p2
p3

p4

0 2

m1
m2 p1

p2
p3

p4

1 1

m1
m2 p1

p2
p3

p4

2 0

m1
m2

p4

p1
p2

p3

0 2

m1
m2

p4

p1
p2

p3

1 1

m1
m2

p4

p1
p2

p3

2 0

m1
m2

p3

p1
p2

p4

0 2

m1
m2

p3

p1
p2

p4

1 1

m1
m2

p3

p1
p2

p4

2 0

m1
m2

p3
p4

p1

p2

0 2

m1
m2

p3
p4

p1

p2

1 1

m1
m2

p3
p4

p1

p2

2 0

Figure 9: [4, Proposition 3.2.2] The irreducible boundary divisors that sum
to D(m1m2, p1p2), arranged by the distribution of the two marks p3, p4 and
the distribution of the degree between the twigs.

The �rst of these is the top-left boundary divisor. The left twig is of
degree-0, so the entire twig is mapped to a single point. Since m1,m2 lie on
this twig, the image must be the unique point in the intersection L1∩L2. Thus
from the perspective of the right twig, we are seeking a map P1 → P2 which
passes through the images of all the marks pi, so the points Qi ∈ P2, and the
image of the node, which we have just found to be the intersection L1∩L2 ∈
P2. By the correspondence between parametrisations and rational curves
themselves, which was informally stated in the introduction, the number of
admissible maps in this intersection is precisely N2.

The remaining divisors in the �rst column must have empty intersection,
for the left twig is mapped to the intersection L1 ∩ L2, which, by generality,
will not coincide with µ(p3) = Q3 or µ(p4) = Q4.
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Similarly, all of the divisors in the right column will have empty inter-
section with Y , for the right twig maps to a point, but µ(p1) = Q1 and
µ(p2) = Q2 are distinct points by generality.

For the middle column, consider that no three of the points pi can lie on
the same twig, for otherwise the twig is mapped to a line containing three of
the points Qi, and this contradicts the generality of the points Qi. Thus the
top three divisors in the middle column will have empty intersection with Y .

For the bottom divisor in the middle column, the right twig is a degree-1
map which passes through two �xed points µ(p1) = Q1 and µ(p2) = Q2.
We know there is at most one such map, but recall that this information is
captured by the number N1. Similarly, the left twig has two marks p3, p4

which are mapped to the two �xed points Q3, Q4. The extra marks mj on
this twig add no constraints, because any line through Q3, Q4 has a uniquely
de�ned intersection with each line Lj, the preimage of which must be mj.
Thus there are N1 = 1 maps from the left twig also. Much like the marks mj

on the left twig, the node also imposes no constraints, so there is precisely
N1 ·N1 = 1 map in the intersection of this divisor and Y .

Thus we have shown that the size of the intersection is

|Y ∩D(m1m2, p1p2)| = N2 +N1 ·N1

We will now �nd the maps in the right-hand side of (12). Our strategy is
much the same as for the left-hand side as above, but we will not draw out
the table.

Each of the twigs contains one of the marks pi which maps to a point
Qi and a mark mj which maps to one of the lines Lj. Thus it follows that
neither twig will have a degree-0 map from it, for this contradicts Qi /∈ Lj.
In other words, the divisors that will contribute to the intersection must have
a degree-1 map from each twig.

As before, we must have at most two of the marks pi on any one twig,
for with three on one twig, we would contradict the generality of the points
Qi. It follows that the divisors that contribute to the intersection are those
in Figure 10, and they each contribute N1 ·N1 = 1 point to the intersection.
This is because the marks mj and the node impose no restrictions on the
maps in the intersection, and so the number of maps in the intersection is
the number of lines through p1, p3 times the number of lines through p2, p4,
in the case of the left divisor in Figure 10.

We now have found the number of points in the right-hand side of the
equation (12) as

|Y ∩D(m1p1,m2p2)| = 2 ·N1 ·N1

In particular, we have found N2 +N1 ·N1 = 2 ·N1 ·N1, which is precisely the
d = 2 case of the formula (1). We conclude N2 = 1 as desired.
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m1

p1

p3

m2

p2

p4

1 1

m1

p1

p4

m2

p2

p3

1 1

Figure 10: The irreducible boundary divisors that each contribute N1 ·N1 = 1
map to the intersection of Y and the boundary divisor D(m1p1,m2p2).

It remains for us to generalise the d = 2 case in Example 5.1 for all d ≥ 2.
It is useful to see the d = 3 case of the argument, which sees the beginning
of where the combinatorial coe�cients appear in (1). The reader is advised
to see Kock and Vainsencher's argument, found in [4, Proposition 3.2.3].

We will �rst examine the intersection Y ∩D(m1m2, p1p2). Throughout, we
will consider the divisor D(A,B; dA, dB). There are three cases to consider:
dA = 0, which contributes Nd maps to the intersection; dB = 0, which has
no contribution; and dA, dB ≥ 1, which contributes the sum in the left-hand
side of (1).

Suppose dA = 0. Then m1,m2 map to the same point P ∈ L1 ∩ L2, and
hence, by generality, we can assume all of the other marks lie on the B-twig.
Then the A-twig doesn't really make any di�erence to the number of points
in the intersection, for all con�gurations of this twig are isomorphic. By the
recursive structure in Proposition 4.16, we are really counting the number
of maps of degree dB = d on B with the 3d − 1 special points, being the
marks pi and the node, mapping to prescribed points Qi and P in P2. This
information is described by Nd.

Suppose dB = 0. Then the two marks p1, p2 each map to the same point
of P2, contradicting generality. Thus no divisor with dB = 0 intersects non-
trivially with Y .

Suppose dA, dB ≥ 1. We have to distribute 3d− 4 marks among the two
twigs. By generality, we cannot have more than 3dA of the marks lying on
the A-twig. Otherwise, there is a degree-dA curve passing through 3dA of
the points Qi, which is impossible by our assumption. Similarly, we have at
most 3dB − 1 marks on the B-twig. We know that p1, p2 are on the B-twig,
so the B-twig contains at most 3dB − 3 of the points we are to distribute
between the twigs. Combining these inequalities, we see that this determines
the number of marks on each twig, for

3d− 4 = (3dA − 1) + (3dB − 3)

There are
(

3d−4
3dA−1

)
ways to distribute the marks between the twigs.
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Ignoring the marks mj and the node for a moment, we see that there are
NdA maps on the A-twig that pass through the points as desired, and NdB

maps on the B-twig. Given any two such maps, the intersection of Lj with
the image of the A-twig will have dA points with multiplicity, by Bézout's
Theorem, and we can choose mj to be in the preimage of any of them. Thus
there are d2

A ways to choose the positions of the two marks m1,m2.
Similarly, using the recursive structure from Proposition 4.16, the node

must map to a point in the intersection of the images of the A and B-twigs.
By Bézout's Theorem again, there are dAdB points with multiplicity in this
intersection, and this corresponds to this many choices of where to put the
node. By `choosing where to put the node,' we mean choosing where to place
the mark x in Proposition 4.16.

In summary,

|Y ∩D(m1m2, p1p2)| = Nd +
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−1

)
· d2

ANdA ·NdB · dAdB (13)

Next we have to �nd the number of maps in Y ∩D(m1p1,m2p2). Again,
we will consider the divisor D(A,B; dA, dB). The di�erent cases of dA, dB
make the following contributions to the intersection: if dA = 0 or dB = 0,
then there is no contribution; and if dA, dB ≥ 1, we get the sum on the
right-hand side of (1).

Each twig contains a mark mj and a mark pi, so if one of dA or dB is
zero, these marks must map to the same point in P2. But this contradicts
generality, for Qi = µ(pi) /∈ Lj but µ(mj) ∈ Lj This shows that when dA or
dB is zero, we get no contribution to the intersection.

Suppose that dA, dB ≥ 1. As before, we have 3d− 4 marks to distribute,
and no 3dA (respectively 3dB) of the marks pi can lie on the A-twig (respec-
tively B-twig). This means that, of the 3d − 4 marks we are distributing,
we must put 3dA − 2 on the A-twig and 3dB − 2 on the B-twig. There are(

3d−4
3dA−2

)
such distributions of the marks.

Again, ignore the node and the marks mj for a moment. On the A-twig,
we have 3dA−1 marks pi, so there are NdA maps here. When choosing where
to place m1 on the A-twig, we can place m1 anywhere in the preimage of the
intersection of L1 and the image of A. By Bézout's Theorem, there are dA
points in this intersection, counting multiplicity. Similarly, there are dBNdB

maps on the B-twig with a choice of the mark m2.
Finally, the node is placed in the preimage of the intersection of the

images of the A and B-twigs, as before. By Bézout's Theorem, there are
dAdB points to choose from, counting multiplicity.
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We have found, therefore, that

|Y ∩D(m1p1,m2p2)| =
∑

dA+dB=d
dA,dB≥1

(
3d−4

3dA−2

)
· dANdA · dBNdB · dAdB (14)

Equating (13) and (14) gives us (1), completing the proof.
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6 Conclusion

In this dissertation, we have introduced the notions of �ne and coarse moduli
spaces. We have looked at two examples of moduli spaces, those of stable
curves and of stable maps, and have used their structures to �nd a recursive
formula for the number of rational curves passing through general points
in the projective plane. Our proof involved counting the intersection of a
number of preimages and boundary divisors.

6.1 Enumerative Geometry

This question and method of proof is common in the �eld of enumerative ge-
ometry, which, in Kock and Vainsencher's words, �[aims to] count how many

geometric �gures satisfy given conditions� [4, Introduction]. The strategy of
proof is as follows: create a natural correspondence between the objects you
are considering and an algebraic variety M , such that conditions on the ob-
jects cut out subvarieties ofM . The answer to the geometric question is then
answered by looking at and examining the intersection of the subvarieties, so
that we now have a problem in intersection theory.

In our case, we were looking at stable (3d−1)-pointed maps from a tree of
projective lines to P2 of degree d, and these are in natural correspondence, by
De�nition 3.9, with the coarse moduli space M0,3d−1(P2, d). We were asking
the question of how many of these maps pass through �xed general points
P1, . . . , P3d−1 ∈ P2. To impose that the i-th mark is mapped to Pi is to
cut out a subvariety ν−1

i (Pi) ⊂ M0,3d−1(P2, d). Finally, the number of maps
through the points Pi is precisely the number of points in the intersection
of the subvarieties ν−1

i (Pi). Thus our geometric question is converted into a
problem in intersection theory.

Of course, in order to compute the number of points in the intersec-
tion, we actually looked at a di�erent intersection in a larger moduli space
M0,3d(P2, d), but this can be considered to be the method of solving the
rephrased problem. Indeed, we have an isomorphism

D(m1m2, p1 . . . p3d−2; 0, d) ∼= M0,3d−1(P2, d)×P2 P2

∼= M0,3d−1(P2, d)

from Proposition 4.16, using that M0,3(P2, 0) ∼= M0,3 × P2 ∼= P2. This iso-
morphism naturally identi�es the moduli space constructed in the paragraph
above with the structures we used in our proof.
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6.2 Gromov-Witten Invariants and Quantum Cohomol-

ogy

We aim to sketch an introduction to Quantum Cohomology. We will largely
follow the exposition of Kock and Vainsencher in [4, Sections 3-5].

In our discussion of divisors in Section 4.1, we restricted our discussion to
codimension 1 subvarieties, but we can consider subvarieties of all codimen-
sions with coe�cients inQ, and form the Chow group A∗(Pr) =

⊕r
k=0Ak(Pr).

In our notation from Section 4.1, Ar−1(Pr) = Cl (Pr) ⊗ Q. The intersection
ring A∗(Pr) is de�ned by setting Ak(Pr) = Ar−k(Pr) via a Poincaré duality
isomorphism

A∗(Pr)→ A∗(Pr)
γ 7→ γ ∩ [Pr]

and using intersections to de�ne multiplication, so that A∗(Pr) has the struc-
ture of a graded Q-algebra. For Pr, there is a natural isomorphism

A∗(Pr) ∼=
Q[h]

(hr+1)

and we can use {h0, . . . , hr} as a basis for A∗(Pr), where h0 ∈ A0(Pr) =
Ar(Pr) corresponds to the whole space Pr, and hr ∈ Ar(Pr) = A0(Pr) corre-
sponds to a point.

The intersection of subvarieties ∩iν−1
i (Pi) we considered in Section 6.1

can immediately be generalised to the intersection ∩iν−1
i (Γi), where Γi ⊂ Pr

are irreducible subvarieties. If the subvarieties Γi ⊂ Pr are su�ciently general
and ∑

i

codim(Γi) = dimM0,n(Pr, d) (15)

the intersection consists of a �nite number of points [4, Proposition 3.4.3].
Let γi ∈ A∗(Pr) correspond to Γi ∈ A∗(Pr). We de�ne theGromov-Witten in-

variants Id(γ1 · · · γn) to be the number of rational curves of degree d which go
through all of the subvarieties Γi. This de�nition only works with the above
assumptions and only if codim(Γi) ≥ 2, but the Gromov-Witten invariants
can be de�ned without these assumptions (the full de�nition and proof that
it corresponds to the above can be found in [4, Proposition 4.1.5]).

For example, let us consider M0,n(P2, d), which has dimension 3d− 1 + n
by Proposition 3.13. If n = 3d−1, then the general points P1, . . . , P3d−1, each
of codimension 2, will satisfy (15). The points correspond to h2 ∈ A2(P2), so

Nd = Id(h
2 · · ·h2︸ ︷︷ ︸

3d−1 times

)
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Multiplication in the Chow ring A∗(Pr) corresponds to intersections, and
can actually be written in terms of some of the Gromov-Witten invariants

hi ∪ hj =
∑
e+f=r

I0(hi · hj · he) hf ∈ Ai+j(Pr) (16)

Sometimes, this cup product ∪ is too limited: for example, if i + j > r, the
product is zero. The quantum cohomology ring has the following quantum

product

hi ∗ hj =
∑
e+f=r

Φije h
f

where

Φije =
∑

a0,...,ar∈N
d∈N

xa0
0 · · ·xarr
a0! · · · ar!

Id

(h0 · · ·h0)︸ ︷︷ ︸
a0 times

· · · (hr · · ·hr)︸ ︷︷ ︸
ar times

·hi · hj · he


It is a fact that this sum has only �nitely many nonzero terms. Notice
how we have introduced formal variables x0, . . . , xr, so we are now working
in a Q[[x0, . . . , xr]]-algebra. When a0, . . . , ar = 0, d = 0, we get the term
corresponding to the classical product (16).

We will �nish by saying that the quantum product is both commutative
and associative, and one can extract results such as Kontsevich's formula
from the associativity relations.
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