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1 Introduction

The Atiyah-Singer Index Theorem offers a method to calculate the Fredholm in-
dex of a differential operator on a manifold under certain hypotheses. The theorem
asserts the equality of the Fredholm index, referred sometimes to as the analytical
index, and the topological index associated to the differential operator. The topo-
logical index depends only on the topology of the manifold and the symbol of the
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1.1 Prerequisites 2 DIFFERENTIAL OPERATORS

operator, and is readily computable. By contrast, the analytical index is hard to
compute directly.

In this project, we introduce the reader to differential operators without assum-
ing prior knowledge of this topic. We discuss why the differential operators are
Fredholm, under the appropriate hypotheses, and in Section 5, we explain why
the Fredholm index should only depend on the symbol of the differential operator,
and the underlying topology of the manifold.

1.1 Prerequisites

This project assumes understanding of smooth manifolds, including familiarity
with partition of unity arguments. A first course in Functional Analysis, including
Fredholm operators, is also required.

2 Differential Operators

On a subset U ⊂ Rn, a differential operator P : C∞(U)→ C∞(U) is a finite sum

Pu =
∑
|α|≤r

aαD
αu (1)

where for each multi-index α = (α1, . . . , αn), we have a function aα ∈ C∞(U)
and an operator

Dα = (D1)
α1 · · · (Dn)

αn

Here, we use the notation of [1],

Dk = −i
(

∂

∂xk

)

It is easy to check the nontrivial fact that an operator is a differential operator
if, and only if, it is a differential operator with respect to any local coordinates.
Thus the definition above extends naturally to the following notion. A differential
operator on a manifold X is a map C∞(X)→ C∞(X) which has the form (1) on
every coordinate patch.
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2.1 Symbols and Ellipticity 2 DIFFERENTIAL OPERATORS

2.1 Symbols and Ellipticity

The symbol of a differential operator (1) characterises the highest order deriva-
tives. Precisely, the symbol is σ(P ) : U × Rn → C given by

(x, ξ) 7→
∑
|α|=r

aα(x)ξ
α (2)

This notion naturally extends to the symbol of a differential operator on a man-
ifold, in which the symbol is a map σ : T ∗(X) → C from the cotangent space,
with the local form (2) on each coordinate patch.

The differential operator is elliptic when the symbol is nonzero at all (x, ξ) where
ξ 6= 0. This corresponds to the symbol being nonzero away from the zero section
of the cotangent bundle.

2.2 Inner Product

Suppose that dx is a non-vanishing smooth measure on X , meaning that on each
coordinate patch (U, x1, . . . , xn), the restriction of the measure is

dx = ϕdx1 · · · dxn

where ϕ is a positive C∞ function. This measure induces an integral on the mani-
fold X which we will use to construct an inner product. For a compact orientable
manifold X , fixing a nonvanishing n-form of volume 1 would suffice, however
we can prove the following theorem without these stronger assumptions.

Define the L2 inner product on C∞(X) by 〈u, v〉 =
∫
uv dx, for all u, v ∈

C∞(X).

Theorem 2.1. [1, Theorem 2.4] Given a differential operator P of order m, there
is a unique differential operator P t of the same order with the property

〈Pu, v〉 = 〈u, P tv〉

for all u, v ∈ C∞(X).

Proof. We follow the proof of [1]. On a coordinate patch (U, x1, . . . , xn), we write
P =

∑
aαD

α and dx = ϕdx1 · · · dxn. Observe

0 =

∫
∂(uv)

∂xk
dx =

〈
∂u

∂xk
, v

〉
U

+

〈
u,

∂v

∂xk

〉
U
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3 SMOOTHING OPERATORS

so that 〈Dαu, v〉U = 〈u,Dαv〉U . Thus

〈Pu, v〉U =
∑
α

∫
aαD

α(u)vϕdx1 . . . xn

=
∑
α

∫
Dα(u)aαϕvdx1 . . . xn

=
∑
α

∫
uDα(aαϕv)dx1 . . . xn

=
∑
α

∫
u
1

ϕ
Dα(aαϕv)ϕdx1 . . . xn

= 〈u, P tv〉U

where
P t =

1

ϕ
Dα(aαϕv)

This proves the local existence and local uniqueness of P t. A standard partition
of unity argument completes the proof.

Notice that P t is elliptic if, and only if, P is elliptic.

3 Smoothing Operators

Definition 3.1. Let X be a compact manifold with a smooth non-vanishing mea-
sure dx. The smoothing operator TK : C∞(X) → C∞(X) corresponding to the
function K ∈ C∞(X ×X) is given by

(TKf)(x) =

∫
K(x, y)f(y)dy

The adjoint of TK is the smoothing operator TL, where L(x, y) = K(y, x), as can
be seen below.

〈TKf, g〉 =
∫ (∫

K(x, y)f(y)dy

)
g(x)dx

=

∫
f(y)

(∫
K(x, y)g(x)dx

)
dy

= 〈f, TLg〉
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4 FREDHOLM THEORY OF DIFFERENTIAL OPERATORS

4 Fredholm Theory of Differential Operators

We will show in this section that an elliptic differential operator is a Fredholm op-
erator. Such operators are defined by their finite dimensional kernels and cokernels
and their closed range. We use the inner product and adjoint P t from Section 2.2
to phrase this property as follows.

Theorem 4.1. Let X be a compact manifold and let P be an elliptic differential
operator. Then P has finite dimensional kernel and RangeP = kerP t⊥.

Since P t is elliptic, it also has finite dimensional kernel, hence P has finite dimen-
sional cokernel. Furthermore, P has closed range for the orthogonal complement
of a subspace is always closed. Thus Theorem 4.1 implies P is Fredholm as de-
sired.

The strategy of proof is to show that P is almost invertible, up to an error term,
where the error term is a smoothing operator. We will appeal to the following two
lemmas, which will not be proved here. See [1] for the proofs.

Lemma 4.2. [1, Theorem 3.1] There is an operator Q and a smoothing operator
TK such that

PQ = I − TK
This may be quoted as P is right invertible, modulo smoothing operators.

Lemma 4.3. [1, Theorem 3.2] The conclusions of Theorem 4.1 hold for the op-
erator I − TK . That is, I − TK has finite dimensional kernel and its range is
the orthogonal complement of ker (I − TL), where TL is the adjoint smoothing
operator to TK .

We are now ready to complete the proof of Theorem 4.1. We follow the argument
provided in [1].

Proof. Let V = ker (I − TK) be the finite dimensional subspace with orthonor-
mal basis f1, . . . , fm. For any f ∈ C∞(X), we can write f = g + h, where

g =
∑
〈f, fi〉fi ∈ V

and h = f − g ∈ V ⊥.

Since RangeP ⊆ Range(I −TK) by Lemma 4.2, define U = (V ∩RangeP )⊥∩
V . We want to show that C∞(X) is the orthogonal direct sum of U and RangeP .
With f = g + h as above, consider that h ⊥ V implies h ∈ Range (I − TK) by
Lemma 4.3, and hence h ∈ RangeP . On the other hand, g ∈ V splits as f1 + g2,
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5 ATIYAH-SINGER INDEX THEOREM

where f1 ∈ U and g2 ⊥ U , so that g2 ∈ RangeP ∩ V by definition of U . Write
f2 = g2 + h to conclude.

Thus U is a finite dimensional space whose orthogonal complement in C∞(X) is
RangeP . It remains to show that U = kerP t:

f ∈ U ⇐⇒ f ⊥ RangeP

⇐⇒ 〈f, Pu〉 = 0 for all u ∈ C∞(X)

⇐⇒ 〈P tf, u〉 = 0 for all u ∈ C∞(X)

⇐⇒ P tf = 0

By switching P and P t, we immediately see that P has a finite dimensional kernel.

5 Atiyah-Singer Index Theorem

Let X be a compact manifold. Consider two elliptic differential operators P and
Q onX with the same symbol σ. Using a standard partition of unity argument, we
can consider a homotopy of elliptic differential operators Pt for t ∈ [0, 1] such that
P0 = P , P1 = Q and moreover that each Pt is an elliptic differential operator with
the same symbol σ. Recall from [3, Theorem 11.6] that the index map is a locally
constant map from the space of Fredholm operators. It follows that the operators
P and Q have the same Fredholm index, and more generally that the index of an
elliptic differential operator depends only on its symbol.

The Atiyah-Singer Index Theorem offers a method to calculate the index of such
an operator P using the topological properties of the manifold X and the symbol
of P . Its statement under certain hypotheses is given below, but it applies more
generally.

Theorem 5.1. [2, Theorem 5.1] Let P be a linear elliptic partial differential op-
erator on a smooth, closed even-dimensional manifold X . Let σ be the symbol of
P . Associate to σ its symbol class [σ] ∈ K(T ∗X) from K-theory. The Fredholm
index of P is given by

Index(P ) =

∫
T ∗X

ch [σ] Todd (TX ⊗ C) (3)

where ch denotes the Chern character, and Todd (TX ⊗ C) is the Todd class of
the vector bundle TX ⊗ C.

We will not define the ingredients in the right hand side of (3) in this project, but
while mathematically complex, the right hand side is in fact readily computable.
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