Equivariant Seidel maps and a flat connection on equivariant symplectic cohomology

TODD LIEBENSCHUTZ-JONES DPhil student Mathematical Institute, University of Oxford

Geometry and Analysis seminar, 26 April 2021

An intertwining relation for equivariant Seidel maps arXiv:2010.03342

Shift operators and connections on equivariant symplectic cohomology arXiv:2104.01891

Oxford Mathematics

Mathematical Institute

 (M, ω) is a closed symplectic manifold. $\sigma: S^1 \times M \to M$ is a Hamiltonian S^1 -action.

The **clutching bundle** $E(\sigma)$ is a bundle with fibre *M* over the sphere S^2 .

The quantum Seidel map

$$QS(\sigma): QH^*(M) \to QH^{*+|\sigma|}(M)$$

counts pseudoholomorphic sections of the clutching bundle $E(\sigma) \rightarrow S^2$.

Novikov ring is $\Lambda = \mathbb{Z}[q^{H_2(M)}] \ni q^A$ with $A \in H_2(M)$. **Quantum cohomology** is $QH^*(M) = H^*(M) \otimes \Lambda$.

Seidel maps

Quantum product

Novikov ring is $\Lambda = \mathbb{Z}[q^{H_2(M)}] \ni q^A$ with $A \in H_2(M)$. **Quantum cohomology** is $QH^*(M) = H^*(M) \otimes \Lambda$.

Quantum product is

$$x_1^+ * x_2^+ = \sum_{\substack{A \in H_2(M) \\ x^- \in H^*(M)}} \# \left(\bigvee_{\substack{x_1^+ \cdots x_2^+}}^{x^-} \right) q^A x^-$$

Theorem (Seidel, '97)
We have
$$QS(\sigma)(\alpha * x^+) = \alpha * QS(\sigma)(x^+)$$
 for $\alpha \in QH^*(M)$.

Seidel maps Proof of $QS(\sigma)(\alpha * x^+) = \alpha * QS(\sigma)(x^+)$

Seidel maps Proof of $QS(\sigma)(\alpha * x^+) = \alpha * QS(\sigma)(x^+)$

We showed $QS(\sigma)(\alpha * x^+) = \alpha * QS(\sigma)(x^+)$. Therefore, we have $QS(\sigma)(x) = x * QS(\sigma)(1)$. This yields the **Seidel representation**

$$\begin{split} \left\{ \begin{aligned} & \text{Hamiltonian } S^1\text{-actions} \right\} \to QH^*(M)^{\times} \\ & \sigma \mapsto Q\mathcal{S}(\sigma)(1). \end{aligned} \tag{1}$$

Equivariant Seidel maps

Equivariant cohomology

Equivariant Seidel maps Definition

In the Borel construction, we have a fibre bundle

 $\frac{S^{\infty}}{\varsigma^1}$

S¹-equivariant quantum Seidel map is

$$Q\mathcal{S}_{S^{1}}(\sigma): QH_{S^{1}}^{*}(M, \sigma) \to QH_{S^{1}}^{*+|\sigma|}(M, \mathrm{Id})$$
$$Q\mathcal{S}_{S^{1}}(\sigma)(\varepsilon^{+}, x^{+}) = \sum_{\substack{A \in H_{2}(M) \\ (\varepsilon^{-}, x^{-}) \in H_{S^{1}}^{*}(M, \mathrm{Id})} \#(\bigcup_{s \in \mathbb{R}^{*}}^{t} e_{s \in \mathbb{R}^{*}}^{t}) q^{A}(\varepsilon^{-}, x^{-})$$

Theorem (Intertwining relation, TL-J) We have

$$QS_{S^1}(\sigma)(x*\alpha^+) - QS_{S^1}(\sigma)(x)*\alpha^- = \mathbf{u} \ WQS_{S^1}(\sigma,\alpha)(x) \quad (2)$$

for any class $\alpha \in H^2_{S^1}(E(\sigma))$. Here, α^{\pm} are the restrictions of α to the fibres above the poles, $\mathbf{u} \in H^2(\mathbb{CP}^{\infty})$ is the generator of $H^*(\mathbb{CP}^{\infty})$, and WQS_{S^1} is a weighted version of the S^1 -equivariant quantum Seidel map.

We proved this for all $\alpha \in H^*_{S^1}(E(\sigma))$ but we'll only present $|\alpha| = 2$ for simplicity.

Equivariant Seidel maps

 $\mathsf{Proof of} \ \mathcal{QS}_{\mathsf{S}1}(\sigma)(\mathsf{x}\ast\alpha^+) - \mathcal{QS}_{\mathsf{S}1}(\sigma)(\mathsf{x})\ast\alpha^- = \mathbf{u} \ \mathcal{WQS}_{\mathsf{S}1}(\sigma,\alpha)(\mathsf{x})$

To parameterise the line of longitude, we would need an S^1 -equivariant map $S^\infty \to S^1$.

But none exists. Let $w \in S^{\infty}$. The composition $S^1 \cdot w \hookrightarrow S^{\infty} \to S^1$ is an isomorphism. But S^{∞} is contractible, so $\pi_1(S^{\infty}) = 0$.

Key insight: it is sufficient to define $S^{\infty} \to S^1$ on a *generic* subset $W \subset S^{\infty}$.

Equivariant Seidel maps

Proof of $QS_{\varsigma1}(\sigma)(x * \alpha^+) - QS_{\varsigma1}(\sigma)(x) * \alpha^- = \mathbf{u} WQS_{\varsigma1}(\sigma, \alpha)(x)$

Maulik and Okounkov defined equivariant Seidel maps in 2013. They also proved the intertwining relation for $\alpha \in H^2_{S^1}(E(\sigma))$. Iritani gave a similar construction in a different setting in 2017.

Their definitions use *virtual fundamental classes* to count sections. Their proofs of the intertwining relation use *virtual localisation*.

We are interested in S^1 -equivariant Floer theory, which does not have the above machinery. We redefined $QS_{S^1}(\sigma)$ using a Morse Borel construction. We reproved the intertwining relation with a new Morse homotopy proof using a 1-dimensional moduli space argument.

The Floer Seidel map $FS(\sigma): FH^*(M; H) \to FH^{*+|\sigma|}(M; \sigma^*H)$ maps the Hamiltonian orbit $x: S^1 \to M$ to the orbit $(\sigma^*x)(t) = \sigma_t^{-1}(x(t)), \quad t \in S^1.$

 $FS(\sigma)$ is an isomorphism of cochain complexes.

Compact: $QH^*(M) \cong FH^*(M; H)$ for all Hamiltonians *H*. The Floer Seidel map and the quantum Seidel map agree.

Non-compact: (with convexity assumption, for example $\mathcal{O}_{\mathbb{P}^1}(-1)$) $FH^*(M, \lambda; H)$ depends on the slope λ ($H = \lambda R + \text{const. at infinity}$) **Symplectic cohomology** is $SH^*(M) = \varinjlim_{K} FH^*(M, \lambda)$ as $\lambda \to \infty$. For *linear* σ of slope κ , the Floer Seidel map is $FS(\sigma) : FH^*(M, \lambda; H) \to FH^{*+|\sigma|}(M, \lambda - \kappa; \sigma^*H)$.

The quantum Seidel map is only defined for linear σ with $\kappa \geq 0$.

The loop space $\mathcal{L}M = \{x: S^1 \to M\}$ has an S^1 -action given by

$$(\theta \cdot x)(t) = x(t-\theta) \qquad \theta \in S^1.$$
 (3)

Definition (Equivariant Floer cohomology)

We combine Morse theory on S^{∞} with Floer theory on M. The Hamiltonian $H: S^{\infty} \times S^1 \times M \to \mathbb{R}$ now depends on S^{∞} . The **equivariant Floer cochain complex** is generated over Λ by $[\varepsilon, x]$, where $\varepsilon \in S^{\infty}$ is critical and x is a Hamiltonian orbit of H_{ε} . The differential counts flowlines in S^{∞} paired with Floer cylinders in M.

$$FH^*_{S^1}(M,\lambda;H)$$
 is a $\Lambda\otimes\mathbb{Z}[\mathbf{u}]$ -module.

There is a map $QH^*(M) \otimes FH^*(M, \lambda) \to FH^*(M, \lambda)$ which counts

An equivariant version of this map would use a map $S^{\infty} \to S^1$ defined on a *generic* subset $W \subset S^{\infty}$. Therefore it would not be a chain map.

Equivariant Floer cohomology

Differentiation

Novikov ring is $\Lambda = \mathbb{Z}[q^{H_2(M)}] \ni q^A$ with $A \in H_2(M)$. For $\alpha \in H^2(M)$, define

$$\frac{d}{d\alpha}(q^A) = \alpha(A) \ q^A. \tag{4}$$

We can pick a Λ -basis for the equivariant Floer cochain complex and apply $\frac{d}{d\alpha}$. This is not a chain map either.

On $QH^*_{S^1}(M, \mathrm{Id}) = \Lambda \otimes \mathbb{Z}[\mathbf{u}] \otimes H^*(M)$, the **Dubrovin connection** is

$$\nabla_{\alpha}(q^{A}x) = \mathbf{u}\frac{d}{d\alpha}(q^{A})x + \alpha * q^{A}x.$$
 (5)

Theorem (Connection, TL-J) On $FH^*_{S^1}(M, \lambda; H)$, for $\alpha \in H^2(M)$ the map

$$\nabla_{\alpha} = \mathbf{u} \frac{d}{d\alpha} + (\alpha * \cdot) - w_{\alpha} \tag{6}$$

is a chain map on the equivariant Floer cochain complex.

Seidel proved special case $\alpha = [\omega]$ in 2016.

Connection and Seidel maps

Theorem (Flatness, TL-J) On $FH^*_{S^1}(M, \lambda; H)$, for any $\alpha, \beta \in H^2(M)$, we have $\nabla_{\alpha} \circ \nabla_{\beta} = \nabla_{\beta} \circ \nabla_{\alpha}.$

The Dubrovin connection is $\nabla_{\alpha} = \mathbf{u} \frac{d}{d\alpha} + \alpha *$. A calculation shows the intertwining relation

 $QS_{S^1}(\sigma)(x * \alpha^+) - QS_{S^1}(\sigma)(x) * \alpha^- = \mathbf{u} \ WQS_{S^1}(\sigma, \alpha)(x)$ is equivalent to

$$Q\mathcal{S}_{S^1}(\sigma)(\nabla_{\alpha}(x)) - \nabla_{\alpha}(Q\mathcal{S}_{S^1}(\sigma)(x)) = 0.$$

Theorem (Connection and Floer Seidel map, TL-J) On $FH^*_{S^1}(M, \lambda; H)$, for any $\alpha \in H^2(M)$ and any linear σ , we have $\nabla_{\alpha} \circ FS_{S^1}(\sigma) = FS_{S^1}(\sigma) \circ \nabla_{\alpha}.$

Torus action

Now let T be a torus acting on M. S^1 -actions correspond to **cocharacters** of T, which are group maps $\sigma : S^1 \to T$. Let $\widehat{T} = S_0^1 \times T$. Constructions of $QH^*_{\widehat{T}}(M)$, $FH^*_{\widehat{T}}(M, \lambda)$, $SH^*_{\widehat{T}}(M)$. We get ∇_{α} , $QS_{\widehat{T}}(\sigma)$, $FS_{\widehat{T}}(\sigma)$ too. But now we can undo the change of \widehat{T} -action, to get endomorphisms

$$S_{\sigma} : QH^*_{\widehat{T}}(M) \to QH^{*+|\sigma|}_{\widehat{T}}(M)$$
$$S_{\sigma} : SH^*_{\widehat{T}}(M) \to SH^{*+|\sigma|}_{\widehat{T}}(M)$$
(7)

called shift operators.

Shift operators Example: P²

The torus T^2 acts on \mathbb{P}^2 (on middle and last coordinate). We have $H^*(BT) = \mathbb{Z}[t_1, t_2]$ and $\Lambda = \mathbb{Z}[q]$ with |q| = 6.

$$QH^*_{\widehat{T}}(\mathbb{P}^2) = \frac{\Lambda \otimes \mathbb{Z}[x_0, x_1, x_2, \mathbf{u}]}{x_0 x_1 x_2 - q}$$
(8)

We calculate $\nabla_x = \mathbf{u}(q\frac{d}{dq}) + x_0$. Let σ correspond to rotation of middle coordinate. We have:

$$S_{\sigma}(1) = x_{1} \qquad S_{\sigma}(t_{1}y) = (t_{1} + \mathbf{u})S_{\sigma}(y)$$

$$S_{\sigma}(x_{0}) = x_{1}x_{0} \qquad S_{\sigma}(t_{2}y) = t_{2}S_{\sigma}(y)$$

$$S_{\sigma}(x_{1}) = x_{1}(x_{1} - \mathbf{u})$$

$$S_{\sigma}(x_{2}) = x_{1}x_{2}$$
(9)

We had the Seidel representation

$$\begin{cases} \mathsf{Hamiltonian} \ S^{1}\text{-actions} \end{cases} \to QH^{*}(M)^{\times} \\ \sigma \mapsto QS(\sigma)(1). \end{cases}$$
(10)

We also have
$$\mathbb{S}_{\sigma}\mathbb{S}_{\sigma'} = \mathbb{S}_{\sigma+\sigma'}$$
.
This yields

$$\mathbb{S} : \operatorname{Cochar}^+(T) \to \operatorname{End}_{\Lambda[\mathbf{u}]}(QH^*_{\widehat{T}}(M))$$

 $\mathbb{S} : \operatorname{Cochar}(T) \to \operatorname{Aut}_{\Lambda[\mathbf{u}]}(SH^*_{\widehat{T}}(M)).$

We have expanded the algebraic structures on $SH^*_{\widehat{\tau}}(M)$ with

- ▶ a flat connection ∇_{α} ,
- shift operators \mathbb{S}_{σ} .

They are compatible, computable in examples and capture geometric information.

Thanks for your attention.

Definition (Borel construction of S^1 -equivariant cohomology) X is topological space, ρ is S^1 -action on X. Take S^∞ : it's a contractible space with a free S^1 -action.

Borel quotient is $S^{\infty} \times X / \sim$, where \sim is $(\theta \cdot w, x) \sim (w, \rho_{\theta}(x))$. It's denoted $S^{\infty} \times_{S^1} X$.

 S^1 -equivariant cohomology is $H^*_{S^1}(X, \rho) = H^*(S^{\infty} \times_{S^1} X)$.

The projection map $S^{\infty} \times_{S^1} X \to S^{\infty}/S^1 = \mathbb{CP}^{\infty}$ induces a map $H^*(\mathbb{CP}^{\infty}) = \mathbb{Z}[\mathbf{u}] \to H^*_{S^1}(X, \rho).$

The Floer cohomology $FH^*(M)$ is inspired by Morse cohomology on the loop space $\mathcal{L}M = \{x : S^1 \to M\}$.

Take a function $H: S^1 \times M \to \mathbb{R}$, called a **Hamiltonian function**. Define the **Hamiltonian vector field** by $\omega(\cdot, X_t) = dH_t$. The **Hamiltonian orbits** are the curves $x: S^1 \to M$ that follow X_t . The **Floer cochain complex** is freely generated over Λ by the Hamiltonian orbits.

A Floer cylinder is a cylinder $u : \mathbb{R} \times S^1 \to M$ which satisfies a Floer equation. The Floer differential counts Floer cylinders between the Hamiltonian orbits.

Definition (Convex symplectic manifold)

A convex symplectic manifold is the union of a compact symplectic manifold and the symplectic manifold $([1,\infty) \times \Sigma, d(R\alpha))$, where (Σ, α) is a closed contact manifold. Example $\mathcal{O}_{\mathbb{P}^1}(-1)$, where $\Sigma = S^3$ is the sphere bundle.

Floer cohomology depends on the **slope** λ , where $H = \lambda R$ + constant at infinity.

Symplectic cohomology $SH^*(M)$ is the limit of $FH^*(M, \lambda)$ as $\lambda \to \infty$.